
394 Yu-Seung Ma et al. ETRI Journal, Volume 30, Number 3, June 2008

Domain analysis is the process of analyzing related
software systems in a domain to find their common and
variable parts. In the case of device drivers, they are
highly suitable for domain analysis because device drivers
of the same domain are implemented similarly for each
device and each system that they support. Considering
this characteristic, this paper introduces a new approach
to the domain analysis of device drivers. Our method uses
a code clone detection technique to extract similarity
among device drivers of the same domain. To examine the
applicability of our method, we investigated whole device
drivers of a Linux source. Results showed that many
reusable similar codes can be discerned by the code clone
detection method. We also investigated if our method is
applicable to other kernel sources. However, the results
show that the code clone detection method is not useful for
the domain analysis of all kernel sources. That is, the
applicability of the code clone detection method to domain
analysis is a peculiar feature of device drivers.

Keywords: Device drivers, code clone detection.

Manuscript received Aug. 10, 2007; revised Nov. 23, 2007.
This work was supported by the IT R&D program of MKE/IITA, Rep. of Korea (2008-S-

023-01, Development of NanoQplus-Based Sensor Network Simulator).
Yu-Seung Ma (phone: +82 42 860 6551, email: ysma@etri.re.kr) and Duk-Kyun Woo

(email: dkwu@etri.re.kr) are with S/W & Content Research Laboratory, ETRI, Daejeon, Rep.
of Korea.

I. Introduction

A device driver is a software component which provides an
interface between the operating system and specific hardware
devices, such as terminals, disks, and network media. However,
as device drivers are critical and low-level system codes, they
are difficult to implement. Also, they have been noted as a
major source of system faults. To overcome these problems, a
few studies [1]-[3] have been conducted to verify or test device
drivers, and other studies [4]-[6] have been conducted to
develop reliable device drivers. The studies mainly try to
generate device driver sources using high-level languages, such
as specification languages. However, currently, there is no
standard or de facto standard specification language for device
drivers. To develop a specification language appropriate to
device drivers, their domain analysis is fundamental.

Domain analysis [7] is the process of identifying, collecting,
organizing, and representing the relevant information in a
domain, based upon the study of existing systems and their
development histories, knowledge captured from domain
experts, underlying theory, and emerging technology within a
domain. It focuses on supporting systematic reuse by capturing
both the commonalities and the variations of systems within a
domain to improve the efficiency of development and
maintenance of those systems. However, domain analysis is
very time-consuming and difficult. In the case of device drivers,
the difficulty becomes worse because the analysis of device
drivers requires deep knowledge of both the system and the
device; therefore, systematic and efficient methods for domain
analysis of device drivers are required.

The process of domain analysis usually involves at least two
steps: a passive step (identifying reusable entities) and an active
one (structuring and organizing information) [8]. However, the

Domain Analysis of Device Drivers Using
Code Clone Detection Method

 Yu-Seung Ma and Duk-Kyun Woo

ETRI Journal, Volume 30, Number 3, June 2008 Yu-Seung Ma et al. 395

previous studies on domain analysis of device drivers [4]-[6]
have been only concerned with the active step, and let the
passive step be conducted manually. To provide automatic
support of the passive step, this paper introduces a new approach
which can help the passive step of a domain analysis of device
drivers. Our solution uses a code clone detection technique to
analyze the similarities of device drivers within the same domain.

Code clones [9], [10] are code portions in source files which
are identical or similar to each another. They are introduced for
various reasons [10], the most famous of which is the re-use of
code by copy-and-paste. Clones are usually considered to be
undesirable because they often introduce errors. However,
there are several situations in which code duplication seems to
be a reasonable or even beneficial design option [11], [12]. Our
approach is to make use of this positive aspect of code clones.
That is, we seek to validate that code clones are inevitable and
helpful to the domain analysis of device drivers.

In contrast to normal programs, which provide diverse
functions over diverse domains, device drivers implement
specific functions over specific domains. As a result, if device
drivers are of the same kind, their behavior is almost the same.
In fact, many developers implement device drivers referring to
(mimicking) existing device drivers of the same domain. Thus,
it seems likely that there would be many pairs of code clones
among device drivers of the same domain.

In this paper, we categorize code clones into two groups: intra
code clone (intra-cc) and inter code clone (inter-cc). Intra code
clone means a code clone whose pair exists in the same source
file. On the other hand, an inter code clone is a code clone of
which the two matching parts are in different source files. To
validate the above-mentioned expectation, we analyze inter code
clones of source files of device drivers using a code clone
detection system, CCFinder [10]. This paper only focuses on the
inter code clone because we are interested in extracting
similarities among different device drivers of the same domain,
and we anticipate that different device drivers are implemented
as different files.

Another purpose of this paper is to investigate if our method can
be useful to other kernel sources besides device drivers. For the
purpose, we also analyze inter code clones of other kernel sources.
The remainder of this paper is organized as follows. Section II

briefly introduces the code clone detection system, CCFinder,
and some of its metrics. Sections III and IV analyze inter code
clones of device driver sources and Linux kernel codes,
respectively. Section V gives a simple case study, and section VI
discusses related works. Finally, section VII concludes the paper.

II. Background

There are many code-clone detection tools such as CCFinder

[10], CloneDR [9], and Dup [13]. In our study, we used
CCFinder [10] because it has good code detection ability and,
above all, it provides metrics related to inter-cc pairs.

CCFinder detects clones with transformation rules and a
token-based comparison. Currently, it can detect code clones
from source files written in Java, C, C++, COBOL, VB, and
C#. This section briefly describes some definitions and metrics
that CCFinder uses. CCFinder [10] defines a clone relation as
an equivalence relation (that is, reflexive, transitive, and
symmetric relation) between code portions. A clone relation
holds between two code portions if and only if they are the
same sequences. A pair of code portions is called a clone pair if
a clone relation holds between the portions.

CCFinder allows the detection of code clones with four
options: minimum clone length, minimum TKS, shaper level,
and P-match application. The ‘minimum clone length’ option
defines the number of minimum number of tokens required for
a code to be a clone. For example, suppose a file has the
following 12 tokens:

a b c x y 1 a b c 2 x y

 Assume the value of the minimum clone length is 3. Then,
only the portion “a b c” can be a code clone. The portions,
“x y,” “a b,” and “b c,” cannot be code clones because their
token length is 2.

The minimum TKS define the size of a set of tokens of a
code fragment of a code clone. The shaper level option is used
to recognize block structure. CCFinder supports four shaper
levels: hard shaper, soft shaper, easy shaper, and without shaper.
With hard shaper, only a token sequence enclosed by a block is
regarded as a clone candidate. With soft shaper, a token
sequence which is not split by an outer block boundary is
regarded a clone candidate. With easy shaper, an arbitrary
token sequence is regarded as a clone candidate, but its length
is measured including its un-split token sequence. Without
shapers, the boundaries of blocks are neglected, that is, any
arbitrary token sequence is a candidate of clone.

The P-match application option is related to variables or
function names. Without P-match, the preprocessor replaces all
variables or function names with a special token, so that the
difference between names is neglected. Both “return x + y” and
“return a + a” are transformed into “return $ + $” (here $ is the
special token for an identifier), so they are identified as a clone
pair. However, with P-match, “return x + y” and “return a + a”
are transformed into “return $1 + $2” and “return $1 + $1,”
respectively, so they are not identified as a clone pair.

In this paper, we use the default setting (minimum clone
length=50, minimum TKS=12, shaper level=2-soft shaper, P-
match application=use) provided by CCFinder.

CCFinder provides several metrics related to code clones,

396 Yu-Seung Ma et al. ETRI Journal, Volume 30, Number 3, June 2008

which are calculated against a code clone or a file. The
following two metrics that are used in this paper are calculated
against a file and related with an inter code clone:

- NBR(f): the number of source files that include one or more
code fragment of the inter code clones related to the file f

- RSA(f): the ratio (percentage) of tokens of the file f that are
covered by inter code clones

The NBR value is an integer whose value is more than zero,
and a large NBR value means that there are many similar files.
An RSA value represents a ratio of similarity between the files.
If a file has an RSA value close to 100%, then it is possible that
the file was created by copying other files.

III. Inter Code Clones of Device Drivers

This section shows how many inter code clones exist among
source codes of device drivers. For the study, we utilized Linux
because its source code is freely available; moreover, it contains
sources of diverse device drivers. The source of Linux consists of
kernels and drivers written in C. Considering the top-level
directory of the Linux source as LINUX_SRC, the sources of
device drivers are mainly under the LINUX_SRC/drivers
directory and arranged in appropriate lower directories according
to their function or bus types. For example, sources of USB
network device drivers and USB storage device drivers are
located under the LINUX_SRC/drivers/usb/net directory
and the LINUX_SRC/drivers/usb/storage directory,
respectively. Furthermore, some directories contain sources of

Table 1. Inter code clones among the device driver sources of the
LINUX_SRC/drivers directory.

Files having inter-cc
Location

Number
of C files Number Average NBR Average RSA

/acpi 152 38 (25%) 3.66 0.12

/char 267 160 (60%) 12.17 0.22

/infiniband 110 54 (49%) 2.02 0.10

/input 105 73 (70%) 7.53 0.24

/isdn 163 105 (64%) 7.90 0.26

/media 322 235 (73%) 6.63 0.22

/mtd 137 70 (51%) 1.90 0.24

/net 475 336 (71%) 6.90 0.16

/scsi 232 153 (66%) 3.56 0.16

/usb 205 146 (71%) 8.44 0.21

/video 181 119 (66%) 4.52 0.17

total 2,349 1,489 (63%) 6.65 0.19

various device drivers of the same domain. For example, the
LINUX_SRC/drivers/usb/storage directory contains sources of
storage device drivers for diverse vendors such as Sony,
Datafab, and Samsung.

The analysis uses the Linux source of version 2.6.10. In the
source, the LINUX_SRC/drivers directory consists of 63
sub-directories. Because our intention is to compare various
driver sources of the same domain, we chose the sub-
directories that consist of more than 100 driver sources except
header files. Then, a total of 11 sub-directories were selected as
shown in Table 1.

Table 1 shows summarized information related to inter code
clones of the device driver sources under the 11 sub-directories,
which was analyzed with CCFinder. The location column
represents the relative paths of the directories from the
LINUX_SRC/drivers directory. The second column shows
the number of C source files. The number of files is calculated
by including files of nesting sub-directories (sub-directories of
a sub-directory). Information about the device driver sources
that contain inter code clones are on the right side of Table 1.
Among the total of 2,349 driver sources, about 63% of the
sources contain at least one inter code clone. The average NBR
value is 6.65. Based on this value, we may consider that there
are, on average, six to seven similar device driver sources in the
same domain.

Next, we investigate the degree of similarity between the
driver sources by examining the RSA values. The average RSA
value is 0.19, which means that about 19% of the codes are the
same or similar among different driver sources that have inter
code clones. Contrary to our expectation, the RSA value
appears to be small. However, this can be partly explained by
the fact that the number of files in each directory does not
indicate the number of device drivers in the same domain. For
example, some device drivers consist of files from two or more
sources. Assuming that there are four files, f1, f2, f3, and f4, in a
specific directory, it is possible that f1 and f2 implement one
device driver, and f2, f3, and f4 implement another device
driver. In this case, f2 can be considered a common library
module. That is, the directory which consists of four files
implement only two device drivers in the example.

Figure 1 shows the distribution of individual RSA values of
the 2,349 driver sources shown in Table 1. In the figure, we can
see files whose RSA values are above 0.9, which mean they are
almost identical to other files. Although most of the RSA values
are concentrated in values less than 0.1, many files have RAS
values above 0.5, which demonstrates that they are similar.

To give more detailed information, we analyze inter code
clones of the LINUX_SRC/drivers/input directory by
examining its sub-directories. We chose this directory because
the sources of input device drivers are easy to present and

ETRI Journal, Volume 30, Number 3, June 2008 Yu-Seung Ma et al. 397

Fig. 1. Distribution of the RSA values of the device driver
sources in the LINUX SRC/drivers directory.

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

File ID

R
S

A
va

lu
e

Table 2. Inter code clones among the device driver sources of the
LINUX_SRC/drivers/input directory.

Files having inter-cc
Location

Number
of C files Number

Average
NBR

Average
RSA

/input/gameport 5 3 (60%) 1.33 0.26

/input/joystick 27 22 (81%) 10.59 0.20

/input/keyboard 14 11 (79%) 7.27 0.36

/input/misc 7 7 (100%) 4.71 0.22

/input/mouse 14 10 (71%) 3.70 0.15

/input/serio 17 4 (24%) 2.00 0.15

/input/touchscreen 12 10 (83%) 12.90 0.39

/input 9 6 (67%) 4.33 0.17

total 105 73 (70%) 7.53 0.24

understand. Table 2 gives detailed information about inter code
clones of the LINUX_SRC/drivers/input directory.

The LINUX_SRC/drivers/input directory contains seven
sub-directories and nine files, which are located there directly.
The RSA value of the directory was 0.24 on average. This
means that about 24% of the codes are similar with other files
on average. Investigating the RSA values for each individual
file in the directory, the lowest RSA value was 0 and the
highest RSA value was 0.87. In fact, in the case of the files
whose RSA values are over 0.5, their codes seem to be very
strongly similar. Table 4 compares part of the sources, gunze.c
and mtouch.c, whose RSA values are 0.56 and 0.61,
respectively. We highlighted the codes in Table 4 that are
different according to their device dependent features.
Surprisingly, the codes are very similar and differences are
mainly due to device dependent features, such as name and abs
values. This suggests that it is possible to generate device

Table 3. Inter code clones among the device driver sources of the
LINUX_SRC/kernel directory.

Files having inter-cc
Location

Number of
files Number NBR RSA

/kernel/irq 9 0 (0%) 0 0

/kernel/power 11 0 (0%) 0 0

/kernel/time 3 0 (0%) 0 0

/kernel 77 7 (9%) 1.28 0.07

total 100 7 (7%) 1.28 0.07

driver sources using a template code where some values are
constituent.

Although we only give detailed information for input device
drivers, which have relatively high RAS values, other kinds of
device drivers show similar patterns.

IV. Inter Code Clone of Kernel Source

Although device drivers of the same domain have lots of
inter code clones, this characteristic may not be peculiar only to
device drivers. Kernel sources also may have many inter code
clones among them. To investigate this issue, we examine code
clones of kernel sources and compare them with those of
device drivers. For this purpose, we investigated the
LINUX_SRC/kernel directory using the same procedure
described in the previous section. Table 3 summarizes code
clones of the LINUX_SRC/kernel directory.

The location column represents the relative path of the
directories from the LINUX_SRC directory. Only seven files
among the total of 100 kernel files turned out to have inter code
clones. Compared to device drivers, the occurrence rate of inter
code clones is one-tenth that of device drivers. Also, the
average NBR and RSA values of the seven files were definitely
smaller than those of device drivers.

The distribution of the RSA values of the 100 kernel sources
is shown in Fig. 2. There is no file whose RSA value is over 0.2.
This demonstrates that ordinary kernel sources rarely contain
similar codes, in contrast to device drivers.

In this section, we examine inter code clones for ordinary
kernel sources. The results show that ordinary kernel sources
contain few inter code clones; thus, the similarity analysis
among the kernel sources seems to be meaningless. A
developer’s programming style may affect the existence of
inter code clones. That is not to say that the difference between
the RSA values of device drivers and those of ordinal kernel
sources is only due to the styles of programmers. As Linux is
an open source with a long history, most of the codes must be

398 Yu-Seung Ma et al. ETRI Journal, Volume 30, Number 3, June 2008

Table 4. Comparison of gunze.c and mtouch.c sources.

input\touchscreen\gunze.c \input\touchscreen\mtouch.c
// … omission

struct gunze {

struct input_dev *dev;
struct serio *serio; int idx;
unsigned char data[GUNZE_MAX_LENGTH];
char phys[32];

};

static void gunze_disconnect(struct serio *serio)
{

struct gunze *gunze = serio_get_drvdata(serio);
input_get_device(gunze->dev);
input_unregister_device(gunze->dev);
serio_close(serio);
serio_set_drvdata(serio, NULL);
input_put_device(gunze->dev);
kfree(gunze);

}

static int gunze_connect(struct serio *serio, struct serio_driver

*drv)
{

struct gunze *gunze;
struct input_dev *input_dev;
int err;
gunze = kzalloc(sizeof(struct gunze), GFP_KERNEL);
input_dev = input_allocate_device();
if (!gunze || !input_dev) {
 err = -ENOMEM;

goto fail1;
}
gunze->serio = serio;
gunze->dev = input_dev;
input_dev->private = gunze;
input_dev->name = "Gunze AHL-51S TouchScreen";
input_dev->phys = gunze->phys;
input_dev->id.bustype = BUS_RS232;
input_dev->id.vendor = SERIO_GUNZE;
input_dev->id.product = 0x0051;
input_dev->id.version = 0x0100;
input_dev->evbit[0] = BIT(EV_KEY) | BIT(EV_ABS);
input_dev->keybit[LONG(BTN_TOUCH)] =

BIT(BTN_TOUCH);
input_set_abs_params(input_dev, ABS_X, 24, 1000, 0, 0);
input_set_abs_params(input_dev, ABS_Y, 24, 1000, 0, 0);

serio_set_drvdata(serio, gunze);
err = serio_open(serio, drv); if (err) goto fail2;
err = input_register_device(gunze->dev);
if (err) goto fail3;
return 0;

fail3: serio_close(serio);
fail2: serio_set_drvdata(serio, NULL);
fail1: input_free_device(input_dev);

 kfree(gunze);
 return err;
}

// … omission

struct mtouch {

struct input_dev *dev;
struct serio *serio; int idx;
unsigned char data[MTOUCH_MAX_LENGTH];
char phys[32];

};

static void mtouch_disconnect(struct serio *serio)
{

struct mtouch* mtouch = serio_get_drvdata(serio);
input_get_device(mtouch->dev);
input_unregister_device(mtouch->dev);
serio_close(serio);
serio_set_drvdata(serio, NULL);
input_put_device(mtouch->dev);
kfree(mtouch);

}

static int mtouch_connect(struct serio *serio, struct serio_driver *drv)
{

struct mtouch *mtouch;
struct input_dev *input_dev;
int err;
mtouch = kzalloc(sizeof(struct mtouch), GFP_KERNEL);
input_dev = input_allocate_device();
if (!mtouch || !input_dev) {
 err = -ENOMEM;

goto fail1;
}
mtouch->serio = serio;
mtouch->dev = input_dev;
input_dev->private = mtouch;
input_dev->name = "MicroTouch Serial TouchScreen";
input_dev->phys = mtouch->phys;
input_dev->id.bustype = BUS_RS232;
input_dev->id.vendor = SERIO_MICROTOUCH;
input_dev->id.product = 0;
input_dev->id.version = 0x0100;
input_dev->evbit[0] = BIT(EV_KEY) | BIT(EV_ABS);
input_dev->keybit[LONG(BTN_TOUCH)] = BIT(BTN_TOUCH);
input_set_abs_params(mtouch->dev, ABS_X,

MTOUCH_MIN_XC, MTOUCH_MAX_XC, 0, 0);
input_set_abs_params(mtouch->dev, ABS_Y,

MTOUCH_MIN_YC, MTOUCH_MAX_YC, 0, 0);

serio_set_drvdata(serio, mtouch);
err = serio_open(serio, drv); if (err) goto fail2;
err = input_register_device(mtouch->dev);
if (err) goto fail3;
return 0;

fail3: serio_close(serio);
fail2: serio_set_drvdata(serio, NULL);
fail1: input_free_device(input_dev);

 kfree(mtouch);
 return err;
}

ETRI Journal, Volume 30, Number 3, June 2008 Yu-Seung Ma et al. 399

Fig. 2. Distribution of the RSA values of the sources in the
LINUX_SRC/kernel directory.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

File ID

R
S

A
va

lu
e

developed as cleverly as possible by experts. Therefore, the
occurrence of many inter code clones is an inevitable
characteristic of device drivers.

V. Case Study

We conducted a case study to ascertain if our method is
useful in the domain analysis of device drivers. This section
briefly describes the method and the results of the case study.

1. Method

Writing device drivers requires much time and effort because
it requires knowledge of the target device and operating system.
Moreover, device drivers of the same domain require the
implementation of similar codes, which may be tedious and
can lead to errors. To reduce the tedious work, a way to
generate such similar codes automatically is needed. Our
solution is the use of a template, in which device driver specific
information is substituted. To generate a template code, we
conducted a similarity study of device drivers of the same
domain by analyzing inter code clones.

In this case study, we analyzed inter code clones of the
sources of touch screen device drivers in Linux. We chose the
touch screen device drivers as a target because their sources
show high RSA values and we are familiar with the sources.

Sources of the touch screen devices in Linux are located in
the two directories: Linux_SRC/drivers/input/touchscreen and
Linux_SRC/drivers/usb/inuput. We searched for inter code
clones of these sources by using CCFinder, and then extracted
common codes and device driver specific codes from the inter
code clones. The template code is constructed from the
common codes, and the device driver specific information is
substituted.

2. Result and Analysis

Table 5 shows our target files and values obtained with
CCFinder. A total of 13 touch screen driver sources are
analyzed, and their bus types are diverse (SPI, Platform, RS232,
ISA, AC97, and USB). Unlike the NBR and RSA values
shown in Tables 1 and 2, which were calculated against whole
driver sources, the values shown in Table 5 were calculated
against only the 13 touch screen sources. As a result, the NBR
and RSA values of Table 5 are relatively small because the
number of sources considered was much smaller.

As shown in Table 5, touch screen drivers using the RS232 bus
have high RSA values. As shown in Table 3, where the gunze.c
and mtouch.c sources are compared, touch screen drivers using
the same bus type, RS232, are almost identical without device
dependent features, such as name, vendor ID, and product ID.

However, CCFinder reports that inter code clones exist only
for touch screen drivers using an RS232. To check whether there
is any similarity between touch screen device drivers using
different bus types, we compared sources of touch screen device
drivers using the USB and RS232 bus types. Table 6 shows part
of the usbtouchscreen.c and gunze.c codes. Those codes show
substantial differences. In particular, the structures and method
names that they use differ. However, although the RSA and
NBR values of the usbtouchscreen.c source are zero, there are
some inter code clones which were not found by CCFinder. The
similar codes are highlighted in Table 6. Evidently, the similarity
is mainly from the usage of the input_dev structure. CCFinder

Table 5. Inter code clones among the sources of touch screen device
drivers in Linux.

File Line count Bus type NBR RSA

/touch/ads7846.c 877 SPI 0 0

/touch/corgi_ts.c 371 Platform 0 0

/touch/elo.c 374 RS232 5 0.11

/touch/gunze.c 159 RS232 5 0.56

/touch/h3600_ts_input.c 408 RS232 0 0

/touch/h680_ts_input.c 130 - 0 0

/touch/mk712.c 184 ISA 0 0

/touch/mtouch.c 185 RS232 5 0.61

/touch/penmount.c 150 RS232 5 0.65

/toucn/touchright.c 160 RS232 5 0.71

/touch/touchwin.c 161 RS232 5 0.70

/touch/ucb1400_ts.c 522 AC97 0 0

/usb/input/usbtouchscreen.c 765 USB 0 0

Average 342 - 2.31 0.26

400 Yu-Seung Ma et al. ETRI Journal, Volume 30, Number 3, June 2008

Table 6. Comparison of the gunze.c and the usbtouchscreen.c sources.

\input\touchscreen\gunze.c \usb\input\usbtouchscreen.c

// … omission

struct gunze {

struct input_dev *dev;
struct serio *serio;
int idx;
unsigned char data[GUNZE_MAX_LENGTH];
char phys[32];

};

// … omission

static int gunze_connect(struct serio *serio, struct serio_driver

*drv)
{

struct gunze *gunze;
struct input_dev *input_dev;
int err;

gunze = kzalloc(sizeof(struct gunze), GFP_KERNEL);
input_dev = input_allocate_device();
if (!gunze || !input_dev) {
 err = -ENOMEM; goto fail1;
}
gunze->serio = serio;
gunze->dev = input_dev;
input_dev->private = gunze;
input_dev->name = "Gunze AHL-51S TouchScreen";
input_dev->phys = gunze->phys;
input_dev->id.bustype = BUS_RS232;
input_dev->id.vendor = SERIO_GUNZE;
input_dev->id.product = 0x0051;
input_dev->id.version = 0x0100;
input_dev->evbit[0] = BIT(EV_KEY) | BIT(EV_ABS);
input_dev->keybit[LONG(BTN_TOUCH)] =

BIT(BTN_TOUCH);
input_set_abs_params(input_dev, ABS_X, 24, 1000, 0, 0);
input_set_abs_params(input_dev, ABS_Y, 24, 1000, 0, 0);

// … omission

}

// … omission

struct usbtouch_usb {

unsigned char *data; dma_addr_t data_dma;
unsigned char *buffer; int buf_len; struct urb *irq;
struct usb_device *udev; struct input_dev *input;
struct usbtouch_device_info *type;
char name[128]; char phys[64];
int x, y, int touch, press;

};

// … omission

static int usbtouch_probe(struct usb_interface *intf,

const struct usb_device_id *id)
{

struct usbtouch_usb *usbtouch;
struct input_dev *input_dev;
struct usb_host_interface *interface;
struct usb_endpoint_descriptor *endpoint;
struct usb_device *udev = interface_to_usbdev(intf);
struct usbtouch_device_info *type;
int err = -ENOMEM;

// … omission (USB related function)

usbtouch = kzalloc(sizeof(struct usbtouch_usb), GFP_KERNEL);
input_dev = input_allocate_device();
if (!usbtouch || !input_dev) goto out_free;

usbtouch->udev = udev;
usbtouch->input = input_dev;

// … omission (USB related function)

input_dev->name = usbtouch->name;
input_dev->phys = usbtouch->phys;
usb_to_input_id(udev, &input_dev->id);
input_dev->cdev.dev = &intf->dev;
input_dev->private = usbtouch;
input_dev->open = usbtouch_open;
input_dev->close = usbtouch_close;
input_dev->evbit[0] = BIT(EV_KEY) | BIT(EV_ABS);
input_dev->keybit[LONG(BTN_TOUCH)] = BIT(BTN_TOUCH);
input_set_abs_params(input_dev, ABS_X,

type->min_xc, type->max_xc, 0, 0);
input_set_abs_params(input_dev, ABS_Y,

type->min_yc, type->max_yc, 0, 0);

// … omission (USB related function)

}

did not find some inter code clones because it uses a token-to-
token matching method to detect code clones. If we use other
code clone detection tools that use line-to-line matching, the
unfound inter code clones can be detected.

From further investigation of inter code clones of the touch
screen device drivers, we conclude that device driver template
codes can be generated by the combination of a bus type and a
function type. Bus types include RS232, USB, platform bus,

and so on. Function types include touch screen, mouse, keypad,
keyboard, and so on.

After the bus type and function type are chosen, device
dependent information for the types is required. Assume that
we are to develop a touch screen device driver that uses an
RS232 bus. That is, its bus type is an RS232, and its function
type is a touch screen. The device dependent information for
the touch screen function type includes name, vendor ID,

ETRI Journal, Volume 30, Number 3, June 2008 Yu-Seung Ma et al. 401

product ID, version information, and abs values of the devices.
Based on the above idea, we made a template for touch

screen device drivers of the RS232 bus type. With the device
dependent values related to the RS232 bus type and the touch
screen function type, we can automatically generate about 150
lines of code. When considering touch screen device drivers of
the RS232 bus type shown in Table 5, the size of the code
generated by our method accounts for more than 50% of the
complete sources. It is notable that more than half of the
generated code is for the RS232 bus function, and the rest is
related to the touch screen function.

VI. Related Works

In the case of operating system code clones, a few studies
[14]-[17] have been conducted, mostly targeting the Linux
kernel. Godfrey and others [14] conducted a preliminary
investigation of cloning among Linux SCSI drivers. They
identified clone duplication as the major factor that affects the
evolution of the subsystem, and demonstrated that the main
source of these clones was in the architecture of the subsystem.
Casazza and others [15] used metrics-based clone detection to
detect cloned functions within the Linux kernel. They mainly
focused on evaluating the extent of cloning in a multi-platform
software system supporting driver platforms such as ARM,
PowerPC, and MIPS. They concluded that, in general, the
addition of similar subsystems is done through code reuse.
Antoniol and others [16] conducted a similar study, evaluating
the evolution of code cloning in Linux, concluding that the
structure of the Linux kernel did not appear to be degrading
due to code cloning activities. Li and others [17] analyzed copy
paste codes in Linux and FreeBSD and their related bugs.

All of these studies show that there are many code clones in
the Linux system, especially for device drivers. The studies
also show that the occurrence of code clones in Linux seems to
be reasonable as the system evolves or when it supports diverse
platform. However, the most important difference between the
previous approaches and our approach is that the other
approaches analyzed code clones among variations of a
specific device driver which occur with different kernel
versions. However, our approach analyzes code clones among
different device drivers of the same domain under a specific
kernel version. Also, although they concluded that the
existence of many code clones is a justifiable circumstance,
they did not give any suggestion for their possible application.

VII. Conclusion

In this paper, we studied the applicability of code clone
detection to analyze the common behavior of device drivers of

the same domain. Using CCFinder, a code clone detection tool,
inter code clones of device drivers and kernel sources were
analyzed. The results demonstrated that many inter code clones
exist among device drivers if they are in the same domain. In
particular, their sources are strongly similar if they use the same
bus type and their inter code clone pairs mainly differ in device
dependent information. As inter code clones of device drivers
could be reusable components in developing device drivers, the
code clone detection method can be helpful for the domain
analysis of device drivers.

As a case study, we developed a touch screen device driver
template after domain analysis using a code clone detection
method. Then, we generated a touch screen device driver from
the template code where device dependent information is
constituent. The result shows that more than 50% of the codes
can be generated for the touch screen device driver using the
RS232 bus.

We also demonstrated that the occurrence of many inter code
clones is a peculiar feature of device drivers. In the case of
kernel sources, few files have inter code clones. However,
device drivers show ten times more inter code clones than
kernel sources and high RSA values.

The existence of many similar codes among device driver
sources of the same domain may be inevitable. However, for
this reason, code clone detection can be useful for the domain
analysis of device drivers.
The similarity analysis of device drivers can be used in diverse
ways. It can be used to design a specification language for
them and to generate a template code where device-dependent
and system-dependent information can be substituted. It can
also be used in the testing of device drivers. Because device
drivers of the same domain exhibit common behavior, similar
test cases will be repeatedly used for them. Therefore, if we
generate common test sets for them in advance, the cost of
testing can be reduced by avoiding the generation of the same
test sets again and again for each device. Those benefits will
increase reusability and reduce redundancy.

References

[1] T. Ball and S.K. Rajamani, “The SLAM Project: Debugging
System Software via Static Analysis,” Proc. of the 29th ACM
SIGPLAN-SIGACT Symp. on Principles of Programming
Languages, Portland, Oregon, Jan. 16-18, 2002, pp. 1-3.

[2] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C.
McGarvey, B. Ondrusek, S.K. Rajamani, and A. Ustuner,
“Thorough Static Analysis of Device Drivers,” Proc. of the ACM
SIGOPS/EuroSys European Conf. on Computer Systems, Apr. 18-
21, 2006, pp. 73-85.

[3] Y.S. Ma and C. Lim, “Test System for Device Drivers of

402 Yu-Seung Ma et al. ETRI Journal, Volume 30, Number 3, June 2008

Embedded Systems,” Proc. of Int’l Conf. on Advanced
Communication Technology, Feb. 2006.

[4] S.A. Thibault, R. Marlet, and C. Consel, “Domain Specific
Languages: From Design to Implementation Application to Video
Device Drivers Generation,” IEEE Trans. on Software Engineering,
vol. 25, no. 3, May-June 1999, pp. 363-377.

[5] T. Katayama, K. Saisho, and A. Fukuda, “Prototype of the Device
Driver Generation System for UNIX-like Pperating Systems,” Proc.
of Int’l Symp. on Principles of Software Evolution, Nov. 2000, pp.
302-310.

[6] S. Wang and S. Malik, “Synthesizing Operating System Based
Device Drivers in Embedded Systems,” Proc. of the 1st
IEEE/ACM/IFIP Int’l Conf. on Hardware/Software Codesign and
System Synthesis, Oct. 2003, pp. 37-44.

[7] R. Prieto-Diaz, “Domain Analysis: An Introduction,” ACM
SIGSOFT Software Engineering Notes, vol. 15, no. 2, Apr. 1990,
pp. 47-54.

[8] S.C. Chang, A.P.M. Groot, H. Oosting, J.C. van Vliet, and E.
Willemsz, “A Reuse Experiment in the Social Security Sector,”
Proc. of the 1994 ACM Symp. on Applied Computing, 1994, pp. 94-
98.

[9] I.D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone
Detection Using Abstract Syntax Trees,” Proc. of the Int’l Conf. on
Software Maintenance, Nov. 1998, pp. 368-377.

[10] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A
Multilinguistic Token-Based Code Clone Detection System for
Large Scale Source Code,” IEEE Trans. on Software Engineering,
vol. 28, no. 7, July 2002, pp. 654-670.

[11] M. Kim, V. Sazawal, D. Notkin, and G. Murphy, “An Empirical
Study of Code Clone Genealogies,” Proc. of the 10th European
Software Engineering Conference and the 13th ACM SIGSOFT
Int’l Symp. on Foundations of Software Engineering, Lisbon,
Portugal, Sept. 2005, pp. 187-196.

[12] C. Kapser and M.W. Godfrey, “Cloning Considered Harmful,”
Proc. of the 13th Working Conf. on Reverse Engineering,
Washington, DC, USA, 2006, pp. 19-28.

[13] B.S. Baker, “A Program for Identifying Duplicated Code,” Proc. of
the 24th Symposium on the Interface, Mar. 1992, pp. 49-57.

[14] M.W. Godfrey, D. Svetinovic, and Q. Tu, “Evolution, Growth, and
Cloning in Linux: A Case Study,” In a Presentation at the 2000
CASCON Workshop on ‘Detecting Duplicated and Near
Duplicated Structures in Large Software Systems: Methods and
Applications, Nov. 16, 2000.

[15] G. Casazza, G. Antoniol, U. Villano, E. Merlo, and M. Di Penta,
“Identifying Clones in the Linux Kernel,” Proc. of the 1st IEEE
Int’l Workshop on Source Code Analysis and Manipulation, 2001,
pp. 90-97.

[16] G. Antoniol, U. Villano, E. Merlo, and M. Di Penta, “Analyzing
Cloning Evolution in the Linux Kernel,” Information and Software
Technology, vol. 44, no. 13, Oct. 2002, pp. 755-765.

[17] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: Finding Copy-
Paste and Related Bugs in Large-Scale Software Code,” IEEE
Trans. on Software Engineering, vol. 32, no. 3, Mar. 2006, pp. 176-
192.

Yu-Seung Ma received the BS, MS, and PhD
degrees in computer science from Korea
Advanced Institute of Science and Technology
(KAIST), Rep of. Korea, in 1998, 2000, and
2005, respectively. In February 2005, she joined
the Embedded Software Development Tool
Research Team at the Electronics and

Telecommunications Research Institute (ETRI), Rep. of Korea, where
she is currently a senior researcher. Her research interests include
program testing, mutation testing, and embedded software engineering.

Duk-Kyun Woo received the BS, MS, and PhD
degrees in computer science from Hongik
University, Rep. of Korea, in 1993, 1995, and
2001, respectively. In January 2001, he joined the
Embedded Software Development Tool
Research Team at the Electronics and
Telecommunications Research Institute (ETRI),

Rep. of Korea, where he is currently a team leader and senior researcher.
His research interests include compilers, embedded software
development tools, and sensor networks.

