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Domain analysis is the process of analyzing related 
software systems in a domain to find their common and 
variable parts. In the case of device drivers, they are 
highly suitable for domain analysis because device drivers 
of the same domain are implemented similarly for each 
device and each system that they support. Considering 
this characteristic, this paper introduces a new approach 
to the domain analysis of device drivers. Our method uses 
a code clone detection technique to extract similarity 
among device drivers of the same domain. To examine the 
applicability of our method, we investigated whole device 
drivers of a Linux source. Results showed that many 
reusable similar codes can be discerned by the code clone 
detection method. We also investigated if our method is 
applicable to other kernel sources. However, the results 
show that the code clone detection method is not useful for 
the domain analysis of all kernel sources. That is, the 
applicability of the code clone detection method to domain 
analysis is a peculiar feature of device drivers. 
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I. Introduction 

A device driver is a software component which provides an 
interface between the operating system and specific hardware 
devices, such as terminals, disks, and network media. However, 
as device drivers are critical and low-level system codes, they 
are difficult to implement. Also, they have been noted as a 
major source of system faults. To overcome these problems, a 
few studies [1]-[3] have been conducted to verify or test device 
drivers, and other studies [4]-[6] have been conducted to 
develop reliable device drivers. The studies mainly try to 
generate device driver sources using high-level languages, such 
as specification languages. However, currently, there is no 
standard or de facto standard specification language for device 
drivers. To develop a specification language appropriate to 
device drivers, their domain analysis is fundamental. 

Domain analysis [7] is the process of identifying, collecting, 
organizing, and representing the relevant information in a 
domain, based upon the study of existing systems and their 
development histories, knowledge captured from domain 
experts, underlying theory, and emerging technology within a 
domain. It focuses on supporting systematic reuse by capturing 
both the commonalities and the variations of systems within a 
domain to improve the efficiency of development and 
maintenance of those systems. However, domain analysis is 
very time-consuming and difficult. In the case of device drivers, 
the difficulty becomes worse because the analysis of device 
drivers requires deep knowledge of both the system and the 
device; therefore, systematic and efficient methods for domain 
analysis of device drivers are required.  

The process of domain analysis usually involves at least two 
steps: a passive step (identifying reusable entities) and an active 
one (structuring and organizing information) [8]. However, the 
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previous studies on domain analysis of device drivers [4]-[6] 
have been only concerned with the active step, and let the 
passive step be conducted manually. To provide automatic 
support of the passive step, this paper introduces a new approach 
which can help the passive step of a domain analysis of device 
drivers. Our solution uses a code clone detection technique to 
analyze the similarities of device drivers within the same domain.  

Code clones [9], [10] are code portions in source files which 
are identical or similar to each another. They are introduced for 
various reasons [10], the most famous of which is the re-use of 
code by copy-and-paste. Clones are usually considered to be 
undesirable because they often introduce errors. However, 
there are several situations in which code duplication seems to 
be a reasonable or even beneficial design option [11], [12]. Our 
approach is to make use of this positive aspect of code clones. 
That is, we seek to validate that code clones are inevitable and 
helpful to the domain analysis of device drivers.  

In contrast to normal programs, which provide diverse 
functions over diverse domains, device drivers implement 
specific functions over specific domains. As a result, if device 
drivers are of the same kind, their behavior is almost the same. 
In fact, many developers implement device drivers referring to 
(mimicking) existing device drivers of the same domain. Thus, 
it seems likely that there would be many pairs of code clones 
among device drivers of the same domain. 

In this paper, we categorize code clones into two groups: intra 
code clone (intra-cc) and inter code clone (inter-cc). Intra code 
clone means a code clone whose pair exists in the same source 
file. On the other hand, an inter code clone is a code clone of 
which the two matching parts are in different source files. To 
validate the above-mentioned expectation, we analyze inter code 
clones of source files of device drivers using a code clone 
detection system, CCFinder [10]. This paper only focuses on the 
inter code clone because we are interested in extracting 
similarities among different device drivers of the same domain, 
and we anticipate that different device drivers are implemented 
as different files. 

Another purpose of this paper is to investigate if our method can 
be useful to other kernel sources besides device drivers. For the 
purpose, we also analyze inter code clones of other kernel sources.  
The remainder of this paper is organized as follows. Section II 

briefly introduces the code clone detection system, CCFinder, 
and some of its metrics. Sections III and IV analyze inter code 
clones of device driver sources and Linux kernel codes, 
respectively. Section V gives a simple case study, and section VI 
discusses related works. Finally, section VII concludes the paper. 

II. Background 

There are many code-clone detection tools such as CCFinder 

[10], CloneDR [9], and Dup [13]. In our study, we used 
CCFinder [10] because it has good code detection ability and, 
above all, it provides metrics related to inter-cc pairs.  

CCFinder detects clones with transformation rules and a 
token-based comparison. Currently, it can detect code clones 
from source files written in Java, C, C++, COBOL, VB, and 
C#. This section briefly describes some definitions and metrics 
that CCFinder uses. CCFinder [10] defines a clone relation as 
an equivalence relation (that is, reflexive, transitive, and 
symmetric relation) between code portions. A clone relation 
holds between two code portions if and only if they are the 
same sequences. A pair of code portions is called a clone pair if 
a clone relation holds between the portions.  

CCFinder allows the detection of code clones with four 
options: minimum clone length, minimum TKS, shaper level, 
and P-match application. The ‘minimum clone length’ option 
defines the number of minimum number of tokens required for 
a code to be a clone. For example, suppose a file has the 
following 12 tokens: 

a b c x y 1 a b c 2 x y 

 Assume the value of the minimum clone length is 3. Then, 
only the portion “a b c” can be a code clone. The portions,   
“x y,” “a b,” and “b c,” cannot be code clones because their 
token length is 2.  

The minimum TKS define the size of a set of tokens of a 
code fragment of a code clone. The shaper level option is used 
to recognize block structure. CCFinder supports four shaper 
levels: hard shaper, soft shaper, easy shaper, and without shaper. 
With hard shaper, only a token sequence enclosed by a block is 
regarded as a clone candidate. With soft shaper, a token 
sequence which is not split by an outer block boundary is 
regarded a clone candidate. With easy shaper, an arbitrary 
token sequence is regarded as a clone candidate, but its length 
is measured including its un-split token sequence. Without 
shapers, the boundaries of blocks are neglected, that is, any 
arbitrary token sequence is a candidate of clone.  

The P-match application option is related to variables or 
function names. Without P-match, the preprocessor replaces all 
variables or function names with a special token, so that the 
difference between names is neglected. Both “return x + y” and 
“return a + a” are transformed into “return $ + $” (here $ is the 
special token for an identifier), so they are identified as a clone 
pair. However, with P-match, “return x + y” and “return a + a” 
are transformed into “return $1 + $2” and “return $1 + $1,” 
respectively, so they are not identified as a clone pair.  

In this paper, we use the default setting (minimum clone 
length=50, minimum TKS=12, shaper level=2-soft shaper, P-
match application=use) provided by CCFinder.  

CCFinder provides several metrics related to code clones, 
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which are calculated against a code clone or a file. The 
following two metrics that are used in this paper are calculated 
against a file and related with an inter code clone:  

- NBR(f): the number of source files that include one or more 
code fragment of the inter code clones related to the file f 

- RSA(f): the ratio (percentage) of tokens of the file f that are 
covered by inter code clones 

The NBR value is an integer whose value is more than zero, 
and a large NBR value means that there are many similar files. 
An RSA value represents a ratio of similarity between the files. 
If a file has an RSA value close to 100%, then it is possible that 
the file was created by copying other files.  

III. Inter Code Clones of Device Drivers 

This section shows how many inter code clones exist among 
source codes of device drivers. For the study, we utilized Linux 
because its source code is freely available; moreover, it contains 
sources of diverse device drivers. The source of Linux consists of 
kernels and drivers written in C. Considering the top-level 
directory of the Linux source as LINUX_SRC, the sources of 
device drivers are mainly under the LINUX_SRC/drivers 
directory and arranged in appropriate lower directories according 
to their function or bus types. For example, sources of USB 
network device drivers and USB storage device drivers are 
located under the LINUX_SRC/drivers/usb/net directory 
and the LINUX_SRC/drivers/usb/storage directory, 
respectively. Furthermore, some directories contain sources of 
 

Table 1. Inter code clones among the device driver sources of the
LINUX_SRC/drivers directory. 

Files having inter-cc 
Location 

Number 
of C files Number Average NBR Average RSA

/acpi 152 38 (25%) 3.66 0.12 

/char 267 160 (60%) 12.17 0.22 

/infiniband 110 54 (49%) 2.02 0.10 

/input 105 73 (70%) 7.53 0.24 

/isdn 163 105 (64%) 7.90 0.26 

/media 322 235 (73%) 6.63 0.22 

/mtd 137 70 (51%) 1.90 0.24 

/net 475 336 (71%) 6.90 0.16 

/scsi 232 153 (66%) 3.56 0.16 

/usb 205 146 (71%) 8.44 0.21 

/video 181 119 (66%) 4.52 0.17 

total 2,349 1,489 (63%) 6.65 0.19 

 

various device drivers of the same domain. For example, the 
LINUX_SRC/drivers/usb/storage directory contains sources of 
storage device drivers for diverse vendors such as Sony, 
Datafab, and Samsung.  

The analysis uses the Linux source of version 2.6.10. In the 
source, the LINUX_SRC/drivers directory consists of 63 
sub-directories. Because our intention is to compare various 
driver sources of the same domain, we chose the sub-
directories that consist of more than 100 driver sources except 
header files. Then, a total of 11 sub-directories were selected as 
shown in Table 1. 

Table 1 shows summarized information related to inter code 
clones of the device driver sources under the 11 sub-directories, 
which was analyzed with CCFinder. The location column 
represents the relative paths of the directories from the 
LINUX_SRC/drivers directory. The second column shows 
the number of C source files. The number of files is calculated 
by including files of nesting sub-directories (sub-directories of 
a sub-directory). Information about the device driver sources 
that contain inter code clones are on the right side of Table 1. 
Among the total of 2,349 driver sources, about 63% of the 
sources contain at least one inter code clone. The average NBR 
value is 6.65. Based on this value, we may consider that there 
are, on average, six to seven similar device driver sources in the 
same domain.  

Next, we investigate the degree of similarity between the 
driver sources by examining the RSA values. The average RSA 
value is 0.19, which means that about 19% of the codes are the 
same or similar among different driver sources that have inter 
code clones. Contrary to our expectation, the RSA value 
appears to be small. However, this can be partly explained by 
the fact that the number of files in each directory does not 
indicate the number of device drivers in the same domain. For 
example, some device drivers consist of files from two or more 
sources. Assuming that there are four files, f1, f2, f3, and f4, in a 
specific directory, it is possible that f1 and f2 implement one 
device driver, and f2, f3, and f4 implement another device 
driver. In this case, f2 can be considered a common library 
module. That is, the directory which consists of four files 
implement only two device drivers in the example. 

Figure 1 shows the distribution of individual RSA values of 
the 2,349 driver sources shown in Table 1. In the figure, we can 
see files whose RSA values are above 0.9, which mean they are 
almost identical to other files. Although most of the RSA values 
are concentrated in values less than 0.1, many files have RAS 
values above 0.5, which demonstrates that they are similar.  

To give more detailed information, we analyze inter code 
clones of the LINUX_SRC/drivers/input directory by 
examining its sub-directories. We chose this directory because 
the sources of input device drivers are easy to present and 
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Fig. 1. Distribution of the RSA values of the device driver
sources in the LINUX SRC/drivers directory. 
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Table 2. Inter code clones among the device driver sources of the
LINUX_SRC/drivers/input directory. 

Files having inter-cc 
Location 

Number 
of C files Number 

Average 
NBR 

Average 
RSA 

/input/gameport 5 3 (60%) 1.33 0.26 

/input/joystick 27 22 (81%) 10.59 0.20 

/input/keyboard 14 11 (79%) 7.27 0.36 

/input/misc 7 7 (100%) 4.71 0.22 

/input/mouse 14 10 (71%) 3.70 0.15 

/input/serio 17 4 (24%) 2.00 0.15 

/input/touchscreen 12 10 (83%) 12.90 0.39 

/input 9 6 (67%) 4.33 0.17 

total 105 73 (70%) 7.53 0.24 

 

understand. Table 2 gives detailed information about inter code 
clones of the LINUX_SRC/drivers/input directory.  

The LINUX_SRC/drivers/input directory contains seven 
sub-directories and nine files, which are located there directly. 
The RSA value of the directory was 0.24 on average. This 
means that about 24% of the codes are similar with other files 
on average. Investigating the RSA values for each individual 
file in the directory, the lowest RSA value was 0 and the 
highest RSA value was 0.87. In fact, in the case of the files 
whose RSA values are over 0.5, their codes seem to be very 
strongly similar. Table 4 compares part of the sources, gunze.c 
and mtouch.c, whose RSA values are 0.56 and 0.61, 
respectively. We highlighted the codes in Table 4 that are 
different according to their device dependent features. 
Surprisingly, the codes are very similar and differences are 
mainly due to device dependent features, such as name and abs 
values. This suggests that it is possible to generate device  

Table 3. Inter code clones among the device driver sources of the 
LINUX_SRC/kernel directory. 

Files having inter-cc 
Location 

Number of 
files Number NBR RSA 

/kernel/irq 9 0 (0%) 0 0 

/kernel/power 11 0 (0%) 0 0 

/kernel/time 3 0 (0%) 0 0 

/kernel 77 7 (9%) 1.28 0.07 

total 100 7 (7%) 1.28 0.07 

 

driver sources using a template code where some values are 
constituent.  

Although we only give detailed information for input device 
drivers, which have relatively high RAS values, other kinds of 
device drivers show similar patterns. 

IV. Inter Code Clone of Kernel Source 

Although device drivers of the same domain have lots of 
inter code clones, this characteristic may not be peculiar only to 
device drivers. Kernel sources also may have many inter code 
clones among them. To investigate this issue, we examine code 
clones of kernel sources and compare them with those of 
device drivers. For this purpose, we investigated the 
LINUX_SRC/kernel directory using the same procedure 
described in the previous section. Table 3 summarizes code 
clones of the LINUX_SRC/kernel directory.  

The location column represents the relative path of the 
directories from the LINUX_SRC directory. Only seven files 
among the total of 100 kernel files turned out to have inter code 
clones. Compared to device drivers, the occurrence rate of inter 
code clones is one-tenth that of device drivers. Also, the 
average NBR and RSA values of the seven files were definitely 
smaller than those of device drivers. 

The distribution of the RSA values of the 100 kernel sources 
is shown in Fig. 2. There is no file whose RSA value is over 0.2. 
This demonstrates that ordinary kernel sources rarely contain 
similar codes, in contrast to device drivers.  

In this section, we examine inter code clones for ordinary 
kernel sources. The results show that ordinary kernel sources 
contain few inter code clones; thus, the similarity analysis 
among the kernel sources seems to be meaningless. A 
developer’s programming style may affect the existence of 
inter code clones. That is not to say that the difference between 
the RSA values of device drivers and those of ordinal kernel 
sources is only due to the styles of programmers. As Linux is 
an open source with a long history, most of the codes must be  
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Table 4. Comparison of gunze.c and mtouch.c sources. 

input\touchscreen\gunze.c \input\touchscreen\mtouch.c 
// … omission 
 
struct gunze { 

struct input_dev *dev; 
struct serio *serio; int idx; 
unsigned char data[GUNZE_MAX_LENGTH]; 
char phys[32]; 

}; 
 
static void gunze_disconnect(struct serio *serio) 
{ 

struct gunze *gunze = serio_get_drvdata(serio); 
input_get_device(gunze->dev); 
input_unregister_device(gunze->dev); 
serio_close(serio); 
serio_set_drvdata(serio, NULL); 
input_put_device(gunze->dev); 
kfree(gunze); 

} 
 
static int gunze_connect(struct serio *serio, struct serio_driver 

*drv) 
{ 

struct gunze *gunze;  
struct input_dev *input_dev;  
int err; 
gunze = kzalloc(sizeof(struct gunze), GFP_KERNEL); 
input_dev = input_allocate_device(); 
if (!gunze || !input_dev) { 
  err = -ENOMEM;   

goto fail1; 
} 
gunze->serio = serio; 
gunze->dev = input_dev; 
input_dev->private = gunze; 
input_dev->name = "Gunze AHL-51S TouchScreen"; 
input_dev->phys = gunze->phys; 
input_dev->id.bustype = BUS_RS232; 
input_dev->id.vendor = SERIO_GUNZE; 
input_dev->id.product = 0x0051; 
input_dev->id.version = 0x0100; 
input_dev->evbit[0] = BIT(EV_KEY) | BIT(EV_ABS); 
input_dev->keybit[LONG(BTN_TOUCH)] = 

BIT(BTN_TOUCH); 
input_set_abs_params(input_dev, ABS_X, 24, 1000, 0, 0); 
input_set_abs_params(input_dev, ABS_Y, 24, 1000, 0, 0); 
 
serio_set_drvdata(serio, gunze); 
err = serio_open(serio, drv); if (err) goto fail2; 
err = input_register_device(gunze->dev); 
if (err) goto fail3; 
return 0; 
 
fail3: serio_close(serio); 
fail2: serio_set_drvdata(serio, NULL); 
fail1: input_free_device(input_dev); 

 kfree(gunze); 
 return err; 
}  

// … omission 
 
struct mtouch { 

struct input_dev *dev; 
struct serio *serio; int idx; 
unsigned char data[MTOUCH_MAX_LENGTH]; 
char phys[32]; 

}; 
 
static void mtouch_disconnect(struct serio *serio) 
{ 

struct mtouch* mtouch = serio_get_drvdata(serio); 
input_get_device(mtouch->dev); 
input_unregister_device(mtouch->dev); 
serio_close(serio); 
serio_set_drvdata(serio, NULL); 
input_put_device(mtouch->dev); 
kfree(mtouch); 

} 
 
static int mtouch_connect(struct serio *serio, struct serio_driver *drv) 
{ 

struct mtouch *mtouch;  
struct input_dev *input_dev; 
int err; 
mtouch = kzalloc(sizeof(struct mtouch), GFP_KERNEL); 
input_dev = input_allocate_device(); 
if (!mtouch || !input_dev) { 
    err = -ENOMEM;  

goto fail1; 
} 
mtouch->serio = serio; 
mtouch->dev = input_dev; 
input_dev->private = mtouch; 
input_dev->name = "MicroTouch Serial TouchScreen"; 
input_dev->phys = mtouch->phys; 
input_dev->id.bustype = BUS_RS232; 
input_dev->id.vendor = SERIO_MICROTOUCH; 
input_dev->id.product = 0; 
input_dev->id.version = 0x0100; 
input_dev->evbit[0] = BIT(EV_KEY) | BIT(EV_ABS); 
input_dev->keybit[LONG(BTN_TOUCH)] = BIT(BTN_TOUCH);
input_set_abs_params(mtouch->dev, ABS_X,  

MTOUCH_MIN_XC, MTOUCH_MAX_XC, 0, 0); 
input_set_abs_params(mtouch->dev, ABS_Y,  

MTOUCH_MIN_YC, MTOUCH_MAX_YC, 0, 0); 
 
serio_set_drvdata(serio, mtouch); 
err = serio_open(serio, drv); if (err) goto fail2; 
err = input_register_device(mtouch->dev); 
if (err)  goto fail3; 
return 0; 
 
fail3: serio_close(serio); 
fail2: serio_set_drvdata(serio, NULL); 
fail1: input_free_device(input_dev); 

 kfree(mtouch); 
 return err; 
} 
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Fig. 2. Distribution of the RSA values of the sources in the
LINUX_SRC/kernel directory. 
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developed as cleverly as possible by experts. Therefore, the 
occurrence of many inter code clones is an inevitable 
characteristic of device drivers. 

V. Case Study 

We conducted a case study to ascertain if our method is 
useful in the domain analysis of device drivers. This section 
briefly describes the method and the results of the case study.  

1. Method 

Writing device drivers requires much time and effort because 
it requires knowledge of the target device and operating system. 
Moreover, device drivers of the same domain require the 
implementation of similar codes, which may be tedious and 
can lead to errors. To reduce the tedious work, a way to 
generate such similar codes automatically is needed. Our 
solution is the use of a template, in which device driver specific 
information is substituted. To generate a template code, we 
conducted a similarity study of device drivers of the same 
domain by analyzing inter code clones. 

In this case study, we analyzed inter code clones of the 
sources of touch screen device drivers in Linux. We chose the 
touch screen device drivers as a target because their sources 
show high RSA values and we are familiar with the sources.  

Sources of the touch screen devices in Linux are located in 
the two directories: Linux_SRC/drivers/input/touchscreen and 
Linux_SRC/drivers/usb/inuput. We searched for inter code 
clones of these sources by using CCFinder, and then extracted 
common codes and device driver specific codes from the inter 
code clones. The template code is constructed from the 
common codes, and the device driver specific information is 
substituted.  

2. Result and Analysis 

Table 5 shows our target files and values obtained with 
CCFinder. A total of 13 touch screen driver sources are 
analyzed, and their bus types are diverse (SPI, Platform, RS232, 
ISA, AC97, and USB). Unlike the NBR and RSA values 
shown in Tables 1 and 2, which were calculated against whole 
driver sources, the values shown in Table 5 were calculated 
against only the 13 touch screen sources. As a result, the NBR 
and RSA values of Table 5 are relatively small because the 
number of sources considered was much smaller. 

As shown in Table 5, touch screen drivers using the RS232 bus 
have high RSA values. As shown in Table 3, where the gunze.c 
and mtouch.c sources are compared, touch screen drivers using 
the same bus type, RS232, are almost identical without device 
dependent features, such as name, vendor ID, and product ID.  

However, CCFinder reports that inter code clones exist only 
for touch screen drivers using an RS232. To check whether there 
is any similarity between touch screen device drivers using 
different bus types, we compared sources of touch screen device 
drivers using the USB and RS232 bus types. Table 6 shows part 
of the usbtouchscreen.c and gunze.c codes. Those codes show 
substantial differences. In particular, the structures and method 
names that they use differ. However, although the RSA and 
NBR values of the usbtouchscreen.c source are zero, there are 
some inter code clones which were not found by CCFinder. The 
similar codes are highlighted in Table 6. Evidently, the similarity 
is mainly from the usage of the input_dev structure. CCFinder  
 

Table 5. Inter code clones among the sources of touch screen device 
drivers in Linux. 

File Line count Bus type NBR RSA

/touch/ads7846.c 877 SPI 0 0 

/touch/corgi_ts.c 371 Platform 0 0 

/touch/elo.c 374 RS232 5 0.11

/touch/gunze.c 159 RS232 5 0.56

/touch/h3600_ts_input.c 408 RS232 0 0 

/touch/h680_ts_input.c 130 - 0 0 

/touch/mk712.c 184 ISA 0 0 

/touch/mtouch.c 185 RS232 5 0.61

/touch/penmount.c 150 RS232 5 0.65

/toucn/touchright.c 160 RS232 5 0.71

/touch/touchwin.c 161 RS232 5 0.70

/touch/ucb1400_ts.c 522 AC97 0 0 

/usb/input/usbtouchscreen.c 765 USB 0 0 

Average 342 - 2.31 0.26
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Table 6. Comparison of the gunze.c and the usbtouchscreen.c sources. 

\input\touchscreen\gunze.c \usb\input\usbtouchscreen.c 

// … omission 
 
struct gunze { 

struct input_dev *dev; 
struct serio *serio; 
int idx; 
unsigned char data[GUNZE_MAX_LENGTH]; 
char phys[32]; 

}; 
 
// … omission 
 
 
 
static int gunze_connect(struct serio *serio, struct serio_driver 

*drv) 
{ 

struct gunze *gunze; 
struct input_dev *input_dev; 
int err; 
 
gunze = kzalloc(sizeof(struct gunze), GFP_KERNEL); 
input_dev = input_allocate_device(); 
if (!gunze || !input_dev) { 
 err = -ENOMEM;  goto fail1; 
} 
gunze->serio = serio; 
gunze->dev = input_dev; 
input_dev->private = gunze; 
input_dev->name = "Gunze AHL-51S TouchScreen"; 
input_dev->phys = gunze->phys; 
input_dev->id.bustype = BUS_RS232; 
input_dev->id.vendor = SERIO_GUNZE; 
input_dev->id.product = 0x0051; 
input_dev->id.version = 0x0100; 
input_dev->evbit[0] = BIT(EV_KEY) | BIT(EV_ABS); 
input_dev->keybit[LONG(BTN_TOUCH)] = 

BIT(BTN_TOUCH); 
input_set_abs_params(input_dev, ABS_X, 24, 1000, 0, 0); 
input_set_abs_params(input_dev, ABS_Y, 24, 1000, 0, 0); 

 
// … omission  

} 
 
 
 
 
 
 
 
 
 

 
// … omission 
 
struct usbtouch_usb { 

unsigned char *data; dma_addr_t data_dma; 
unsigned char *buffer; int buf_len; struct urb *irq; 
struct usb_device *udev; struct input_dev *input; 
struct usbtouch_device_info *type; 
char name[128]; char phys[64]; 
int x, y, int touch, press; 

}; 
 
// … omission 
 
static int usbtouch_probe(struct usb_interface *intf,  

const struct usb_device_id *id) 
{ 

struct usbtouch_usb *usbtouch; 
struct input_dev *input_dev; 
struct usb_host_interface *interface; 
struct usb_endpoint_descriptor *endpoint; 
struct usb_device *udev = interface_to_usbdev(intf); 
struct usbtouch_device_info *type; 
int err = -ENOMEM; 
 
// … omission (USB related function) 

 
usbtouch = kzalloc(sizeof(struct usbtouch_usb), GFP_KERNEL); 
input_dev = input_allocate_device(); 
if (!usbtouch || !input_dev) goto out_free; 
 
usbtouch->udev = udev; 
usbtouch->input = input_dev; 
 
// … omission (USB related function) 
 
input_dev->name = usbtouch->name; 
input_dev->phys = usbtouch->phys; 
usb_to_input_id(udev, &input_dev->id); 
input_dev->cdev.dev = &intf->dev; 
input_dev->private = usbtouch; 
input_dev->open = usbtouch_open; 
input_dev->close = usbtouch_close; 
input_dev->evbit[0] = BIT(EV_KEY) | BIT(EV_ABS); 
input_dev->keybit[LONG(BTN_TOUCH)] = BIT(BTN_TOUCH);
input_set_abs_params(input_dev, ABS_X,  

type->min_xc, type->max_xc, 0, 0); 
input_set_abs_params(input_dev, ABS_Y,  

type->min_yc, type->max_yc, 0, 0); 
 
// … omission (USB related function) 

} 
 

 

did not find some inter code clones because it uses a token-to-
token matching method to detect code clones. If we use other 
code clone detection tools that use line-to-line matching, the 
unfound inter code clones can be detected. 

From further investigation of inter code clones of the touch 
screen device drivers, we conclude that device driver template 
codes can be generated by the combination of a bus type and a 
function type. Bus types include RS232, USB, platform bus, 

and so on. Function types include touch screen, mouse, keypad, 
keyboard, and so on. 

After the bus type and function type are chosen, device 
dependent information for the types is required. Assume that 
we are to develop a touch screen device driver that uses an 
RS232 bus. That is, its bus type is an RS232, and its function 
type is a touch screen. The device dependent information for 
the touch screen function type includes name, vendor ID, 
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product ID, version information, and abs values of the devices. 
Based on the above idea, we made a template for touch 

screen device drivers of the RS232 bus type. With the device 
dependent values related to the RS232 bus type and the touch 
screen function type, we can automatically generate about 150 
lines of code. When considering touch screen device drivers of 
the RS232 bus type shown in Table 5, the size of the code 
generated by our method accounts for more than 50% of the 
complete sources. It is notable that more than half of the 
generated code is for the RS232 bus function, and the rest is 
related to the touch screen function. 

VI. Related Works 

In the case of operating system code clones, a few studies 
[14]-[17] have been conducted, mostly targeting the Linux 
kernel. Godfrey and others [14] conducted a preliminary 
investigation of cloning among Linux SCSI drivers. They 
identified clone duplication as the major factor that affects the 
evolution of the subsystem, and demonstrated that the main 
source of these clones was in the architecture of the subsystem. 
Casazza and others [15] used metrics-based clone detection to 
detect cloned functions within the Linux kernel. They mainly 
focused on evaluating the extent of cloning in a multi-platform 
software system supporting driver platforms such as ARM, 
PowerPC, and MIPS. They concluded that, in general, the 
addition of similar subsystems is done through code reuse. 
Antoniol and others [16] conducted a similar study, evaluating 
the evolution of code cloning in Linux, concluding that the 
structure of the Linux kernel did not appear to be degrading 
due to code cloning activities. Li and others [17] analyzed copy 
paste codes in Linux and FreeBSD and their related bugs.  

All of these studies show that there are many code clones in 
the Linux system, especially for device drivers. The studies 
also show that the occurrence of code clones in Linux seems to 
be reasonable as the system evolves or when it supports diverse 
platform. However, the most important difference between the 
previous approaches and our approach is that the other 
approaches analyzed code clones among variations of a 
specific device driver which occur with different kernel 
versions. However, our approach analyzes code clones among 
different device drivers of the same domain under a specific 
kernel version. Also, although they concluded that the 
existence of many code clones is a justifiable circumstance, 
they did not give any suggestion for their possible application. 

VII. Conclusion 

In this paper, we studied the applicability of code clone 
detection to analyze the common behavior of device drivers of 

the same domain. Using CCFinder, a code clone detection tool, 
inter code clones of device drivers and kernel sources were 
analyzed. The results demonstrated that many inter code clones 
exist among device drivers if they are in the same domain. In 
particular, their sources are strongly similar if they use the same 
bus type and their inter code clone pairs mainly differ in device 
dependent information. As inter code clones of device drivers 
could be reusable components in developing device drivers, the 
code clone detection method can be helpful for the domain 
analysis of device drivers. 

As a case study, we developed a touch screen device driver 
template after domain analysis using a code clone detection 
method. Then, we generated a touch screen device driver from 
the template code where device dependent information is 
constituent. The result shows that more than 50% of the codes 
can be generated for the touch screen device driver using the 
RS232 bus. 

We also demonstrated that the occurrence of many inter code 
clones is a peculiar feature of device drivers. In the case of 
kernel sources, few files have inter code clones. However, 
device drivers show ten times more inter code clones than 
kernel sources and high RSA values.   

The existence of many similar codes among device driver 
sources of the same domain may be inevitable. However, for 
this reason, code clone detection can be useful for the domain 
analysis of device drivers. 
The similarity analysis of device drivers can be used in diverse 
ways. It can be used to design a specification language for 
them and to generate a template code where device-dependent 
and system-dependent information can be substituted. It can 
also be used in the testing of device drivers. Because device 
drivers of the same domain exhibit common behavior, similar 
test cases will be repeatedly used for them. Therefore, if we 
generate common test sets for them in advance, the cost of 
testing can be reduced by avoiding the generation of the same 
test sets again and again for each device. Those benefits will 
increase reusability and reduce redundancy.  
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