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EXTENDING THE APPLICABILITY OF
INEXACT GAUSS-NEWTON METHOD FOR
SOLVING UNDERDETERMINED NONLINEAR
LEAST SQUARES PROBLEMS

TOANNIS KONSTANTINOS ARGYROS AND GILSON DO NASCIMENTO SILVA

ABSTRACT. The aim of this paper is to extend the applicability of Gauss-
Newton method for solving underdetermined nonlinear least squares prob-
lems in cases not covered before. The novelty of the paper is the introduc-
tion of a restricted convergence domain. We find a more precise location
where the Gauss-Newton iterates lie than in earlier studies. Consequently
the Lipschitz constants are at least as small as the ones used before. This
way and under the same computational cost, we extend the local as well
the semilocal convergence of Gauss-Newton method. The new develop-
mentes are obtained under the same computational cost as in earlier stud-
ies, since the new Lipschitz constants are special cases of the constants
used before. Numerical examples further justify the theoretical results.

1. Introduction

We consider the nonlinear least squares problem
1

1) min () = 5 F(2)"F(x),

where 2 C R"™ is an open set, F' : Q@ — R™ is a continuously differentiable
nonlinear function. A wide variety of applications can be found in mathematical
programming literature, see for example [5]-[20].

It is not hard to see that finding the stationary points of ( is equivalent to
solving the following nonlinear equation

(2) V¢(x) = F'(z)TF(x) = 0.

Thus, Newton’s method for solving (2) can be used to solve (1). However,
Newton’s method for solving (2) requires the computation of the Hessian ma-
trix of ( at each iteration, and this may be difficult especially for large scale
problems (see for instance [8]). A generalization of the Newton method called
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312 I. K. ARGYROS AND G. N. SILVA

the Gauss-Newton method (GN), can be used to solve the problem (1). This
iterative algorithm computes the sequence

Th41 :xk—F’(xk)TF(xk), k:0,17...,

where F’(z))! denotes the Moore-Penrose inverse of the linear operator F’(zy).
Many authors have studied the local as well as semi-local convergence of the
Gauss-Newton method; see for instance [4,6,11,15,22].

The study of convergence of iterative algorithms is usually centered into two
categories: semi-local and local convergence analysis. The semi-local conver-
gence is based on the information around an initial point, to obtain conditions
ensuring the convergence of these algorithms; while the local convergence is
based on the information around a solution to find estimates of the computed
radii of the convergence balls. Local results are important since they provide
the degree of difficulty in choosing initial points.

In [6] Bao et al., considered the case when m < n, i.e., the problem (1) is
underdetermined. They proposed some approximate Gauss-Newton methods
for solving (1), and they studied the convergence of their method under the
full row rank assumption. They noted for that purpose that, in the case when
F'(x},) is of full row rank, F’(z)t = F/'(2)T (F'(zx) F'(2)T)~!. Thus, solving

the Gauss-Newton step, d, := —F'(x3) F(x), is equivalent to solving the
equation
(3) F' (i) F' (x1) s = —F (),

and setting the step dy := F'(xy)% sy

Bao et al, [6], proposed the truncated Gauss-Newton method for solving
(1) which solves (3) inexactly and compute di by di := F'(x3)Tsg. They
considered the assumption that the Fréchet derivatives are Lipschitz continuous
and of full row rank, and established Kantorovich convergence criteria for their
algorithm.

A usual assumption to obtain quadratic convergence of Newton’s method, is
the Lipschitz continuity of F’ in a neighborhood of the solution, see [1,2,6,9,16,
17]. Indeed, ensuring control of the derivative is an important consideration in
the convergence analysis of Newton’s method. On the other hand, a couple of
studies have dealt with the issue of convergence analysis of Newton’s method,
by relaxing the assumption of Lipschitz continuity of F”, see for example [3-5,
19).

Here, we extend the convergence domain of truncated Gauss-Newton method
even further than [5-7,10-13,15,19-22] using our new idea of restricted con-
vergence domains. To achieve this goal, we first introduce the center-Lipschitz
condition which determines a subset of the original domain for the mapping
containing the iterates. The classical Kantorovich’s condition is then related
to the subset instead of the original domain. This way, the center-Lipschitz
condition is more precise than if they were depending on the original domain
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of the mapping as in earlier studies. The new technique leads to: weaker suf-
ficient convergence conditions, tighter error bounds on the distance involved
and an at least as precise information on the location of the solution. These
advantages are obtained under the same computational cost as in earlier stud-
ies, since in practice the new conditions are special cases of the Kantorovich’s
condition. The idea introduced in this paper can be used on other iterative
methods. Numerical examples are also provided to show that our results apply
to solve equations but not earlier ones [3,4].

The remainder of this paper is organized as follows. In Section 2, some
notations and important results used throughout the paper are presented. In
Sections 3 and 4, the convergence analysis is obtained for algorithm TGNU (I)
and TGNU (II). Section 5 contains numerical examples showing the superiority
of the new results. Finally, the paper ends with a conclusion section.

2. Majorizing sequences

The convergence analysis that follows in Section 3 is based on some scalar
functions. Define function fg(-) : RU{0} — R by

(4) fa(t) = at® = Bt + p,

where a > 0, 8 > 0 and p > 0.
Suppose that

(5) dap < (2,
then fz has two distinct positive zeros if (5) is a strict inequality and one
positive zero if equality holds in (5).

The smaller zero denoted by ¢, is given by

(6) ¢, B— VP —dou \M‘_

2ce
Let K >0,L>0,§>0and w € [0,1) be parameters with K < L. Define
M(1+w)
M,w,d) =
aMw,0) = S s (1 + wo(l T )]
1—Mé(1
B0 g) — 1 L= Mo+ w)

1+ Mwé(l +wd(l+w)’
p=0(1+w),

where M = K or L. Set a := a(K,w,9), f:= f(K,w,d), a1 := a(L,w,d) and
ﬁl = ﬁ(Lawaé)'
Similarly function fg,(-) : RU{0} — R is defined by

(7) fo, (1) = art® = it +
and if
(8) 40&1,LL < B%a
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we can set

) o B — /B —daap

20[1

to be the smallest zero of function f3,.
It was shown in [6, Lemma 3.1] that, if

(10) Li<H
holds, so does (8), where
(1—w)?
14+ w)(V/2w? —w+1)2+ 201 —w)+ 202 —w+1)

Clearly, by replacing aq, 81, L by a, 8, K, respectively in the proof of the
lemma, we have that, if

(12) Ké<H
holds, so does (5).
Condition (10) is the sufficient convergence criterion for the semi-local con-

vergence of method TGNU I, II. We shall show that (10) can be replaced by
(12). Notice that

(13) L§<H=K§<H.
Implication (13) does not imply
Ké<H=L6<H

unless, if K = L. Hence, the applicability of the methods TGNU I, II studied
in Section 3 and Section 4 is extended. Moreover, the error bounds are also
improved. Similarly, it is easy to see that

(14) donp < BF = dap < B2,

i < a8 <2
since a < a7 and 5 < Z5.
al [e3%

11) H=

Moreover, the implication (14) does not imply
(15) dop < B% = dagp < B,

unless, if K = L.
We need to define some majorizing sequences for method TGNU I, II. First,
we define sequences used in [6]:

_ _ fo(te) o (tr — th—1)® + (1 = B1)(tr — tr_1)

(16) to =0, ty1 =ty — () s — St ;
T fo. (b))  ; _ o1 (ty — th-1)? + (1= B1)(tk — tr—1)

(17) to =0, tp1 =t A bk Sarie — B ;

where f1,(t) = a1t? —t + p.
The following result was given in [6].
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Lemma 1. Let t., {tx}, {tx} be given, respectively by (9), (16) and (17).
Suppose that (8) holds. Then, the following items hold for each k =0,1,. ..

(18) th <tppr <te, tp <itpp1 <ts,

{ty} and {t}} increasingly converge to t.. Moreover,

(19) thp1 — e < ﬁﬁ for each k=0,1,...
1

and for

= B — /B —4doqp
B+ VB —daap
2k _1

(20) t*ffk:%t* for each k=0,1,....
im0 M

Next, we define the new sequences that shall be shown to be majorizing for
method TGNU I, IT for 0 < Ko < K :

(1 = K7y) [Ty — F—1)® + (1 = B) (T — Ti—1))]
(1 = Kory) (2007, — 1) 7

(21) 70=0, Tpy1 =7k —

alry —re-1)? + (A= B)re —re—1) _ Jo(re)
207 — 1) ¥ fé(rk)’

(22) 7o =0, 7py1=17K—

(1= K&p)[a(3k — 3k-1)> + (1 = B)(Sk — $k—1)]
(]. — K0§k)(2a§k — ﬁ)

(23) 50=0, Spy1 =5k —

and

a(sk = 8k-1)" + (1 = B)(3k — Sx—1) _ 5 180k
25, — f f5(8k)

Remark 1. (a) It follows from the definition of sequences {ry}, {31}, {7}, {x}

and a simple inductive argument that for each k =1,2,...

(25) 0< 7, <, 0 < Ppg1 — T < Thg1 — Ths

(24) 50=0, 8p41=35,—

(26) 0< 341 <8, and 0< 38,41 — 8k < 8kp1 — Sk,

so sequences {7y}, {7} under the hypotheses of next lemma increasingly
converge to their unique least upper bounds 7 = limg_ 400 7r and §° =
limy_, 4 o0 Sk such that

(27) <t and A

VAl

So far sequences {7}, {5x} were shown to converge under the same hypotheses
(see (5)) as {ri}, {Sx}. However, these sequences may converge under even
weaker hypotheses than (5). Such results can be found in [2]-[5], [17].
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(b) If we only suppose (8), then as noted above (5) also holds. A simple
inductive argument again, the definition of the sequences lead to (25) and (26).
Then, clearly we have the analog of Lemma 1 for sequence {r}.

Lemma 2. Let t,., {rp}, {fc} be given, respectively by (6), (22) and (24).
Suppose that (5) holds. Then, the following items hold

(28) T < Tht1 < Ux, Sk < <§k+1 < ty,

{rr} and {3} increasingly converge to t.. Moreover,

(29) Spa1 — 8k < % for each k=0,1,...

_ p—/F?—dap
and fO’f’ Y= m

2k -1
(30) te — 8 = 2%:172
Proof. Simply replace a1, B1, Y1, tk, tk, t*, fa,, (8) by @, B, v, Tk 8k, e, fa5
(5), in the proof of Lemma 1, respectively. O
Remark 2. In view of Remark 1 we have
(31) 0< 7, <rp <tg, 0L Tpyr — Tk <Thg1 — Tk < g1 —

and
(32) 0 < 8p41 <8k <tr, 0<8pq1 — 5k < 8pp1 — 8k < tpgr — Lie

Hence, in view of (30)—(32) not only the sufficient convergence criteria are
weaker under our new approach (see (5), (12), replacing (8), (10), respectively)
but also the error bounds on ||zgt+1 — x|, ||xx — 2*|| are also improved as well
as the information on the location of the solution x*. It is very important
to notice that these advantages are obtained under the same computational
cost as in [6]. Indeed in practice the computation of parameter L requires the
computation of parameters Ky and K as special cases.

3. Convergence analysis for algorithm TGNU (I)

We present the semi-local and local convergence analysis of the truncated
GN method denoted by Algorithm TGNU ({€;}), for solving problem (1) under
condition (45) that follows.

Algorithm TGNU ({ex})
Choose an initial point 2y € Q C R". For each &k =0, 1,..., until convergence,
do:
Step 1: Compute F’(xg).
Step 2: Solve (3) to find si such that the

(33) A = F/(Ik)F/(Ik)TSk +F(£L'k)
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satisfies
(34) 1P (o) Al < e

Step 3: Set w1 = o1 + F(ak) " sp.
Let Q : R™ — R™ be a linear operator or an m x n matrix. We denote by Q7
the adjoint of Q. We say that a mapping QT : R™ — R” or an n x m matrix
Q' is the Moore-Penrose inverse of Q, if the following estimates are satisfied:
QQ'Q =0, Q'QQT=Q", (QQN"=0Q", ((Q'Q)"=Q'Q.
Moreover, if Q is of full row rank, then QT = QT(QQT)~! and QQ' = Igm,
where Igm stands for the m x m identity matrix. Furthermore, it follows easily
from the definition of the Moore-Penrose inverse, that (QTP)I = PTQ if P and
Q are full rank.

From now on we shall simply say full rank instead of simply full row rank.
More details about the properties of Moore-Penrose inverse can be found in
[7,20,21]. In the rest of the paper, we suppose that m < n, unless otherwise
stated.

Let U(w, 0) stand for the open ball in R™ with center w and of radius § > 0.
Then, U(w, §) stands for its closure.

From now on, we shall often use the identity

(35) Tht1 = Tk — F/(gck)TF(mk) + F’(mk)T)\k

implied by (33) and (34) provided that F’(xy) is of full rank.
Let 29 € R™. Define R := sup{t > 0: U(zo,t) C Q}. Let also || - || be the
Euclidean vector norm or the induced matrix norm and set Qo = U(zo, R).
We need the definition of the center Lipschitz condition.

Definition 1. A nonlinear operator G(:) : g — R™ is said to satisfy the
center Lipschitz condition at xzg with center Lipschitz constant Ky on g, if

(36) IG(x) — G(xo)|| < Kollz — zo|| for each z,y € Q.
Define Uy := Qp N Uz, K%J)

Definition 2. A nonlinear operator G(:) : 9 — R™ is said to satisfy the
restricted Lipschitz condition with Lipschitz constant K on Uy, if

(37) IG(x) — G(y)|| < K||z —y|| for each z,y € Up.

In earlier studies [6]-[22] the following condition was used instead of the
combination of Definition 1 and Definition 2 that we shall use in the present
study.

Definition 3. A nonlinear operator G(-) : Q¢ — R™ is said to satisfy the
Lipschitz condition with Lipschitz constant L on g, if

(38) 1G(z) = G)ll < Llz —yl for each x,y € .
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Notice, however that Uy C 4. Hence, we have that

(39) K < L.
We also have by Definition 1 and Definition 3 that
(40) Ko<L

and KLO can be arbitrarily large [3]-[5].
In the rest of the paper, we shall assume that

(41) Ky < K.

Otherwise, i.e., if K < Ky the results to follow will also hold with K
replacing K. Let us see why the new results improve the earlier results in [6]:

Let 2o € Qg be such that F’(zg) is of full row rank. Set G(z) = F'(xo) F'(z).
We need the auxiliary result.

Lemma 3. Let xg € Qg be such that F'(xg) is of full row rank. Suppose that
F'(x0)TF'(z) satisfies the Lipschitz condition with Lipschitz constant L on Q.
Then, for each x € Uy, F'(x) is of full row rank and

1

(42) |1F(z) F'(z0)| < 1— Lz —=o||

If we simply use the more precise and needed Kj instead of L used in the
proof of the preceding lemma, we obtain:

Lemma 4. Let xg € Qg be such that F'(xg) is of full row rank. Suppose that
F'(z0)'F'(x) satisfies the center-Lipschitz condition with Lipschitz constant K
on Qo. Then, for each x € Uy, F'(x) is of full row rank and

1

! i "(x _
(43) [ F"(2) " F' (z0)|| < 1 — Koz — @o]|

Notice that in view of (40), (43) is more precise than (42) on the norm
|F'(x)TF'(x0)||. That exchange of upper bounds in the proofs of the results
leads to a tighter convergence analysis. On the other hand, K can replace L
on the upper bounds on ||F(xq)"F'(x})|| leading again to more precise uppers
bounds on this norm. Then, in view of (41), we can reproduce all the proofs
of the semi-local results in [6] with simply K, Kj replacing L, Lo, respectively.

The same technique can be used to improve the local results in [6]. It is
convenient for the semi-local convergence analysis that follows to introduce
some parameter, sequences and conditions.

Set

(44) p = [1F" (o) F(x0)]l

Let {nr} be a non-negative sequence satisfying 0 < 7 := Supg>o Mk < 1 for
some 7 € [0,1). We shall suppose that

(45) ek < || F'(20) ' F ()|
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and
(46) er < ||F (o) F ().

Next, we present the semi-local convergence analysis of sequence {z,} gen-
erated by the Algorithm TGNU ({ex}).

Theorem 5. Suppose that there exists xo € Qo such that F'(xq) is of full
row rank and U(xzg, R) C Q. Moreover, suppose that F'(x¢) F'(-) satisfies
the center-Lipschitz condition at xq with Lipschitz constant Ko on Qo and the
restricted Lipschitz condition with constant K on Uy, (12) holds and r* <
R, where R, Ky, K, Qqo, Uy and R* are defined previously. Then, sequence
{z1} generated by (35) with starting point o by the method with sequence {e}
satisfying (45) is well defined, remains in U(xg,r*) for each k = 0,1,... and
converges to a solution z. of equation F(z) =0 in U(xq,r").
Moreover, the following error bound holds:

(47) leg — x| < r* —r for each k=0,1,....

Proof. By simply following the proof of [6, Theorem 3.1], replacing sequence
{tx} by {rx} and the Lo, L by Ky, K, respectively, we obtain the estimates
with the crucial differences (see also Remark 3.7).

The estimates for j =0,1,...,k

1 1

48 F'(z)TF' (z0)] < < ,
(48) S R e e

(L — Krj)(rje1—7;
14w

(49) 1F" (o) T F' ()] <

and by (22), (35), (48), (49) and
21 — @l = | () F' (o) (—F" (o) F () + F' () Ty |
< (L4 K)|[F (a7) F (o) || F (o) F (a)]

(50) S<Tjp1 — T3 Srjpr — 1y,
)
(51) lzk+1 — 2kl < 7j0 =75 < 1jg1 — 1y

The rest of the proof follows as in [6, Theorem 3.1] with the noted modifications.
O

Remark 3. (a) The corresponding estimates in [6] are less tight (see (5), (6),

(8), (9)7 (10)7 (12)7 (13)7(15))7

|F" (25) F (o) || < !

< )
1-— L”.’,EJ 7560” —1- Ltj

/ ’ (1_Ltj)(tj _tj)
| P (o) F ()] < e
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and
2541 = @3] < tjpa — 1.
(b) If m = n, (45) and (46) reduce to
1F" (20) " Al < enll F' (o) ™' F(a)|| and
|F (z0) "Mkl < €| F (z0) " F(z)||? k=0,1,....
This way we obtain the next corollary that follows for inexact Newton methods

[6,13,15,22]. This corollary improves Corollary 3.1 (of Theorem 3.1 in [13])
which in turn improved the results in [13,15].

(52)

Corollary 6. Suppose that m = n and there exists xo € Q such that F'(z¢)~! €
ZR",R") and U(zg, R) C Q. Moreover, suppose that F'(xq) 1F'(-) satisfies
the center-Lipschitz condition at xq with center Lipschitz constant Ky on g
and the restricted Lipschitz condition with Lipschitz constant K on Uy, (12)
holds and r* < Ry. Then, sequence {x1} generated by method (35) (with
F'(x)T = F'(z)~1) with sequence {e;} satisfying (46) is well defined, remains
in U(xg,m*) and converges to a solution . of equation F(x) =0 in U(xg,r*).
Moreover, the following error bound holds:

(53) lze — 2] <7 =1 foreach k=0,1,....

Next, we present the local convergence analysis of method (35) with (12)
satisfied using Theorem 5. To achieve this, we define

(54) K=——— forsome >0 to be determined later.
1— Koo
Notice that
A L
(55) L= =
1—Lo

was used in [6]. We have that
(56) K<L

This modification leads to advantages similar to the semi-local convergence case
and under the same computational cost (see also Remark 4 and the numerical
section).

The proofs of the next three results are obtained from the corresponding
ones in Lemma 3.2, Theorem 3.2 and Corollary 3.2 in [6], respectively by using
the modification already suggested in Theorem 5. So these proofs are omitted
(see also Remark 4).

Lemma 7. Suppose there exists x* € Q solving equation F(x) = 0, such that
F'(x*) is of full rank and U(x*, R) C Q. Moreover, suppose that F'(x*)TF'(.)
satisfies the center-Lipschitz condition at x* with constant Ky on Qo (with
xo = x*) and the restricted Lipschitz condition with Lipschitz constant K on
Uy (with xo = x*). Furthermore, suppose that 0 < o < {R, K%j} Then, the
following items hold for each x € U(x*,r):



EXTENDING THE APPLICABILITY OF INEXACT GAUSS-NEWTON METHOD 321
. * 1 .
(1) F'(x0) is of full rank and ||F'(xo)TF'(z*)|| < TKaop) A
(2) F'(xo)tF'(-) satisfies the Lipschitz condition with Lipschitz constant K
given in (54) on U(xo, R — 0);
K 2
(3) 6 < oty + 0. where 8 := | F/ (o)  F (o).

Theorem 8. Suppose that there exists x* € Q) solving equation F(x) = 0,
so that F'(x*) is of full rank and U(z*,R) C D. Moreover, suppose that
F'(x*)TF'(-) satisfies the center-Lipschitz condition at xo with constant Ko on
Dy and the restricted Lipschitz condition with Lipschitz constant K on Uy.
Define

, (1-w)R 1 1
= (1)L
(57) 0 mln{l—w+4(1+w)2’K T+ 20
Then, sequence {xy} generated by method (35) for zo € U(z*,0) and {ex}

a
satisfying (45) is well defined, remains in U(x*, 9) for each k =0,1,2,... and
converges to a solution I, of equation F(x) = 0.

We also have the following corollary of Theorem 8 for the GN method.

Corollary 9. Suppose that there exists x* € Q solving equation F(x) = 0 such
that F'(x*) is of full rank and U(z*,R) C D. Suppose that F'(z*)F'(-) sat-
isfies the center-Lipschitz condition with constant Ky on Dy and the restricted
Lipschitz condition with Lipschitz constant K on Uy. Define

(58) @:—min{ls, 2212/5}

Then, sequence {x} generated for xy € U(z*, 0) by GN method, is well defined,
remains in U(z*, 0) for each k = 0,1,2,... and converges to a solution &, of
equation F(z) = 0.

Remark 4. (a) The radii of convergence in [6] are given respectively by,

(59) 01 = min { 1— o(Jl+_4L(ul)i w)?’ % (1 - \Aiﬁ) }

and

(60) 01 := rnin{];7 2_226}
Then, we have that

(61) 010

and

(62) 010
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That is we obtain an at least as large radius of convergence leading to a
wider choice of initial points. Moreover, as already shown in Section 2 the
error bounds on the distances ||z,+1 — zy||, ||xn — Z«|| are tighter leading to
fewer iterations to achieve a desired error tolerance. It is worth noticing that
the preceding advantages are obtained under the same computational effort as
in [6], since in practice the computation of L requires the computation of Ky
and K as special cases.

(b) The results obtained here can be improved even further, if we consider
instead of the ball Uy the ball U; defined by

U :=QnU (xl, ; | F' (x0) TF(x0)||>

Notice that U1 C Uy C Uy CQ,so0the Llpschltz constant K can be replaced by
a constant K at least at small. Then, K can replace K in all preceding results.
The iterates {zj} lie in U; according to the proofs (see also the numerical
examples).

4. Convergence analysis for algorithm TGNU (II)

We present the semi-local as well as the local convergence analysis of Al-
gorithm TGNU (see method (35)) for solving problem (1.1) under condition
(46) along the same lines of Section 4 but some of the parameters are defined
differently. We also use sequences {3}, {31} instead of {4}, {71}, respectively
(or {tr}, {tx}, respectively in [6]).

The proofs are obtained as in Section 3 with the above modifications. There-
fore, these proofs are omitted.

As in Section 3, it is convenient to introduce some parameters

(63) a:=g5 +[§<(§2:gél s T +wb(u<s Ty At ﬁ
and

(64) =14 B6(1 4 wd).

It

(65) 5< L

T V(K +20)?2 4 2Kw + K + 2w’
then (5) holds.

Theorem 10. Suppose that there exists xy € Q such that F'(xq) is of full
rank and U(zg, R) C Q. Moreover, suppose that F'(xo)1F'(:) satisfies the
center-Lipschitz condition at xg with Lipschitz constant Ky on g, the restricted
Lipschitz condition with constant K on Uy, (65) holds and §* < R and {ey}
satisfies (46). Then, sequence {xr} generated by method (35) is well defined,
remains in U(xg, §*) for each k = 0,1,... and converges quadratically to a
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solution . of equation F(z) = 0 in U(xg, 7). Moreover, the following error
bound holds:

ke
SR

21,
i=0 Y

(66) ok — 2™ <

where T, v are given in Section 2 for «, 8, 1 given in (61) and (62).
Remark 5. (a) Let H(w) := H be defined by (11) for each w € (0,1) and let H
be defined by

K

(67) H(w, K) = V(K +2w)? + 2Kw + K + 2w

for each K € [0,400) and w € (0,1). Then, (12) and (65) are equivalent to

(68) Ké < H(w, K)
and

(69) K6 < H(w),
respectively.

(b) If €, = 0, method (3.3) is reduced to the GN method. Choose wy = 0.
Then, we have

1, 1—-v1-2K§ 1—-+v1-2K6
(70) H=-, 7m=—""—F+—— and 7= —————.
2 K 1+v1-2K6

We obtain from Theorem 10 the following improvement of the Kantorovich-like
theorem for the GN method.

Corollary 11. Suppose that there exists xg € Q such that F'(x¢) is of full rank
and U(zg, R) C Q. Moreover, suppose that F'(xo)TF'(-) satisfies the center-
Lipschitz condition with Lipschitz constant Ko on g, the restricted Lipschitz
condition with constant K on Uy. Furthermore, suppose that

(71) O<K5§% and 5* < Ry.

Then, sequence {x} generated by method (35) is well defined, remains in
Ul(xg,5*) for each k = 0,1,... and converges quadratically to a solution x,
of equation F(x) = 0 in U(xg,5*). Moreover, estimate (66) holds, where 5*
and vy are given in (70).

Next, we present the local convergence analysis of method (35) under con-
dition (46).

Theorem 12. Suppose there exists x* € Q solving equation F(x) = 0 such that
F'(x*) is of full rank and U(x*, R) C Q. Moreover, suppose that F'(x*)TF'(.)
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satisfies the center-Lipschitz condition with Lipschitz constant Ky on g, and
the restricted Lipschitz condition with constant K on Uy. Define

(72)

. 2 1
0:=mins —R, .
{11 3(«/(K+w)2+Kw+K+w)}

Then, sequence {xy} generated for xg € U(x*, ) by method (35) with sequence
{ex} satisfying (46) is well defined, remains in U(z*, o) for each k = 0,1,...
and converges quadratically to a solution &, of equation F(x) = 0.

Remark 6. (a) The results of this section improve the corresponding results
Lemma 3.3, Theorem 3.3, Remark 3.4, Corollary 3.3 and Theorem 3.4 in [6]
along the same lines of the arguments and comparison made in Remarks of
Section 2, Section 3 and this section.

(b) The rest of the results in Section 4 in [6] are also immediately improved
along the same lines. However, we leave the details to the motivated reader.

5. Numerical examples

We present numerical examples to show that the earlier results do not apply
or if they apply, our results also apply and can do better. For simplicity we
choose m = n in the next two examples. The first example is given for the
semi-local case.

Example 1. Let m=n=1,Qy=Q=U(0,1),w=0, \y =0, 20 =1, R=1.
Define function F on g by

1
(73) F(z) =2 —h forsome h € (0, 5)

Then, we have § = §(1—h), Ko =3—h, L=2(2—h), a1 =5 =2—h, f1 =1

and p = ¢. Then, old condition (8) is not satisfied, since

1
(74) 4oqp > B3 for each h € (0, 5)

Notice also that condition (8) in this special case is the famous for its simplicity
and clarity Kantorovich sufficient convergence criterion for the convergence of
Newton’s method [6,15-17] (see also (71) with K = L). Therefore, there is no
guarantee under the old results that Newton’s method converges to z* = Vh
starting at x¢o = 1.

Using our results, we have

. _ I 1
Case: UO = QO nU (1‘07 Ko) =U <£Z?0, K0>'
Then, F'(x¢) ' F'(-) is restricted Lipschitz with K = 2 (%) . We also have

thatozz%,ﬁzlandu:é.
Then, condition (5) becomes
4(4—-h)(1—h)

B S 7A S
(75) 3 T <1
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which is satisfied for h € Iy := [.46198316...,%). The same range for h is
obtained, if we use (71).

Case: Uy =QoNU (xh K%) - 6).

‘We need the computation

o)™ (') ~ Pl < (e — el + ly — ]l + 2Dl — )
<2[(3-8)+ 22 he-ui.

—2(2h% — 5h — 6)

3—h
Using these values, (5) is satisfied for all h € I := [.44137239, ] which extends
the interval found in preceding case. Notice also that 6Ky < 1 for all h € I.
Therefore, if h € Iy or h € I our results guarantee the convergence of Newton’s
method to z* starting at zo = 1.

Finally, as already noted in Section 2, if both (5) and (8) hold, then our
results provide tighter error bounds on the distances ||x,+1 — zn||, [|Tn — ¥
and a more precise information on the location of the solution z*. Notice also
that Ko < L and K < L for all h € [0, 1) and

SO

[A(:

Ko< K if h>2-3,
Ko>K if h<2-V3

and
Ko=K if h=2-—3.
The second example concerns the local case.

Example 2. Let m =n =3 and Q =U(z*,1), so R =1 and Q¢ = Q. Choose
Ak =0, so w = 0. Define mapping F on € for w = (x,y,2)” by

e—1 T
(76) F(w) = <er -1, —5— y? +y,z) .
Then, we have for * = (0,0,0)7 that the Fréchet-derivative is given by
e 0 0
(77) Fwy=| 0 (e—ly+1 0
0 0 1

We obtain L = e, Ko = e—1, and Uy = Qg N U(m*,%ﬂ) = U(w*,i),
K =e%o. By using (57)—(60), we get that
0= 0= 16366659

and
01 = 01 = .10172259,
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so 01 = 01 < 0 = p. Hence, our convergence radii are larger than the ones in
[6]. Tt is worth noticing that larger radius of convergence implies a wider choice
of initial points and fewer iterations to achieve a desired error tolerance. These
improvements are important in computational mathematics.

6. Conclusion

In this paper, semi-local as well as local convergence results of Gauss-Newton
method by using a restricted convergence domain have been obtained for solv-
ing problem (1), extending the applicability of the method under the same
computational cost as in [6]. This idea has been used to obtain a tighter local
convergence analysis and an at least as precise complexity for Newton iteration
as in earlier studies [2]-[5]. The idea can be used on other iterative methods
[2]-[22].
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