• 제목/요약/키워드: apparent viscosity

검색결과 338건 처리시간 0.031초

오미자 첨가량에 따른 Demi-glace 소스의 무기성분 함량과 점도 및 관능적 특성 (The Mineral Contents, Viscosity and Sensory Characteristics of Demi-glace Sauce According to the Varying Quantity of Omija added)

  • 김현덕
    • 한국식생활문화학회지
    • /
    • 제19권6호
    • /
    • pp.667-677
    • /
    • 2004
  • This study was conducted to examine contents of mineral, viscosity in the Demi-glace with added quantity of Omija extracts. Firstly, The level of mineral content in order was K, Na, P, Ca, Mg, Fe, Zn, Mn, B. The more Omija extracts, Ca, Mg, Fe, Zn, Mn, B was increased, but K, Na, P was decreased. Secondly, Viscosity of control was 538.13cP at rpm 100, and the sauce added with Omija extracts was $464.80{\sim}578.00cP$. Regardless of Omija quantity there was Psedoplastic characteristic which showed apparent viscosity was decreased even though shear rate was increased. Thirdly, Sensory characteristics of Demi-glace sauces based on preference of 5 tastes, It was founded that 2% added Omija was the best, and 1%, 0%, 3%, 5% added Omija was next in order. Finally, Sensory intensities of Demi-glace sauces based on gender and occupation of the 5 tastes : As the sourness, bitterness, hotness, salines taste of all over was Omija added quantity was many more, appeared strong intensity, it was sensory intensities of 5% Omija added sauce was the highest. But sensory intensities of sweetness, Male showed 2% Omija added sauce, Female student and cook showed control was the highest.

Small and Large Deformation Rheological Behaviors of Commercial Hot Pepper-Soybean Pastes

  • Choi, Su-Jin;Kang, Kyoung-Mo;Yoo, Byoung-Seung
    • Food Science and Biotechnology
    • /
    • 제15권6호
    • /
    • pp.871-876
    • /
    • 2006
  • Rheological behavior of commercial hot pepper-soybean paste (HPSP) was evaluated in small amplitude oscillatory and steady shear tests. Storage modulus (G'), loss modulus (G"), and complex viscosity (${\eta}^*$) as a function of angular frequency (${\omega}$), and shear stress (${\sigma}$) as a function of shear rate (${\gamma}$) data were obtained for 5 commercial HPSP samples. HPSP samples at $25^{\circ}C$ exhibited a non-Newtonian, shear-thinning flow behavior with high yield stresses and their flow behaviors were described by power law, Casson, and Herschel-Bulkley models. Time-dependent flow properties were also described by the Weltman, Hahn, and Figoni & Shoemaker models. Apparent viscosity over the temperature range of $5-35^{\circ}C$ obeyed the Arrhenius temperature relationship with activation energies (Ea) ranging 18.3-20.1 kJ/mol. Magnitudes of G' and G" increased with an increase in ${\omega}$, while ${\eta}^*$ decreased. G' values were higher than G" over the most of the frequency range (0.63-63 rad/sec), showing that they were frequency dependent. Steady shear viscosity and complex viscosity of the commercial HPSP did not fit the Cox-Merz rule.

Numerical simulation of a single bubble suspension in polyol resin

  • Dongjin Seo;Lim, Yun-Mee;Youn, Jae-Ryoun
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2003년도 The Korea-Japan Joint Symposium
    • /
    • pp.47-48
    • /
    • 2003
  • Dilute bubble suspensions are prepared by introducing carbon dioxide bubbles into polyol resin. The apparent shear viscosity is measured with a wide gap parallel plate rheometer. A numerical simulation for deformation of a single bubble suspended in a Newtonian fluid is conducted by using a finite volume method (FVM) where multigrid algorithms are incorporated. Transient and steady results of bubble deformation were obtained and were in good agreement with experimental results. At high capillary number, viscosity of the suspension increases as the volume fraction increases, while at low capillary number, the viscosity decreases as the volume fraction increases.

  • PDF

구조보강용 FRP 함침.접착수지의 사용가능시간 시험방법 비교 연구 (Comparative Study on Test Method of Pot Life of Structural Adhesives for FRP Composite Material used in Strengthening RC Members)

  • 유영찬;최기선;김긍환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.353-356
    • /
    • 2006
  • Hardening of 2 component adhesive such as epoxy resin used in saturating FRP composite is triggered by mixing each component part within a batch. Chemical reactions occur explosively after a certain time after mixing the batch, viscosity and temperature rapidly increase. As a results, bond performance remarkably decreases and workability declines due to increase in viscosity. Therefore, adhesion should be completed before chemical hardening reaction is rapidly going on. This study examined pot life of structural adhesive for FRP composites by means of change in apparent viscosity and means of exothermic reaction temperature proposing in existing test standards. Result of each test method was compared and analyzed, and reasonable test method and evaluation method are suggested.

  • PDF

Suitable Use of Capillary Number for Analysis of NAPL Removal from Porous Media

  • Jeong, Seung-Woo,
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 임시총회 및 추계학술발표회
    • /
    • pp.25-28
    • /
    • 2004
  • The capillary number is used to represent the mobilization potential of organic phase trapped within porous media. The capillary number has been defined by three different forms, according to types of flow velocity and viscosity used in the definition of capillary number. This study evaluated the suitability of the capillary number definitions for representing TCE mobilization by constructing capillary number-TCE saturation relationships. The results implied that the capillary number should be correctly employed, according to interest of scale and fluid flow behavior. This study suggests that the pore-scale capillary number may be used only for investigating the organic-phase mobilization at the pore scale because it is defined by the pore-velocity and the dynamic viscosity. The Newtonian-fluid capillary number using Darcy velocity and the dynamic viscosity may be suitable to quantify flood systems representing Newtonian fluid behavior. For viscous-force modified flood systems such as surfactant-foam floods, the apparent capillary number definition employing macroscopic properties (permeability and potential gradient) may be used to appropriately represent the desaturation of organic-phases from porous media.

  • PDF

Acid-Base Equilibria and Related Properites of Chitosan

  • Joon-Woo Park;Kyung-Hee Choi;Kwang-hee Koh Park
    • Bulletin of the Korean Chemical Society
    • /
    • 제4권2호
    • /
    • pp.68-72
    • /
    • 1983
  • The $pK_{a}$ of $-NH_{3}^{+}$ group of chitosan in water was 6.2, while that of D-glucosamine-HCl, monomer of chitosan, was found to be 7.8. The difference of $pK_{a}$ values between chitosan and D-glucosamine was attributed to the strong electrostatic interaction between $-NH_{3}^{+}$ groups in chitosan. The apparent binding constant of $Cu^{2+}$ to D-glucosamine was estimated to be $1{\times}10^{4}$. For chitosan, no significant binding of $Cu^{2+}$ to the polymer was observed when pH < 5, but strong cooperative binding was observed near pH 5.1. The mechanism of such cooperativity was proposcd. Chitosan in solution exhibited typical polyelectrolytic behaviors: viscosity increases with increased amount of charged group, and decreases with addition of salt. The concentration dependence of viscosity was measured, and the Huggins parameters and intrinsic viscosity were calculated at various ionic strength. The results were interpreted in terms of molecular properties of the chitosan molecule.

Penetration behavior of biopolymer aqueous solutions considering rheological properties

  • Ryou, Jae-Eun;Jung, Jongwon
    • Geomechanics and Engineering
    • /
    • 제29권3호
    • /
    • pp.259-267
    • /
    • 2022
  • The rheological and penetration characteristics of sodium alginate and xanthan gum aqueous solutions were analyzed for the development of biopolymer-based injection materials. The results of viscosity measurements for the rheological characteristics analysis show that all aqueous biopolymer solutions exhibit a tendency for shear-thinning, i.e., the apparent viscosity decreases as the shear rate increases. In addition, a regression analysis using several models (Power-law, Casson, Sisko, and Cross) was applied to the shear-thinning fluid analysis results, the highest accuracy was determined by applying the power-law model. The micromodel experiment for the penetration characteristics analysis determined that all biopolymer aqueous solutions show higher pore saturation than water, and that pore saturation tends to increase as the flow rate and concentration increases. When comparing the rheological and penetration characteristics of the biopolymer aqueous solution used in this study, the xanthan gum aqueous solution showed a fully developed shear-thinning tendency, unlike the sodium alginate aqueous solution. This tendency is considered to have the advantage of enhancement injectability and pore saturation.

ER유체의 겉보기 점도특성 평가에 관한 연구 (Evaluation of Apparent Viscosity Properties for Electro-Rheological Fluid)

  • 안영공;;양보석
    • Tribology and Lubricants
    • /
    • 제14권2호
    • /
    • pp.42-48
    • /
    • 1998
  • Electro-Rheological (ER) fluid is a class of functional fluid whose apparent viscosity can be varied by the applied electric field strength. The ER fluid is classified into two types; one is a dispersive fluid and the other is a homogeneous. Dispersive ER fluid is a colloidal suspension of fine semiconducting particles in a dielectric liquid and liquid crystal (LC) is classed as homogeneous type ER fluid. LC has been originally developed for some electronic display devices. Various mechanical components applying ER fluid have been developed, and the their performance typically depends on the characteristics of ER fluid which have generally been evaluated by a rotational viscometer. However, the ER fluid introduced into various mechanical components undergoes not only simple shear flow but press flow or oscillating flow. For the evaluation of ER fluid, the authors developed an reciprocating type viscometer. The amplitude is controlled on 5 mm at the frequency from 50 to 1000 Hz. In the present paper, the performance of several types of ER fluid is evaluated by the reciprocating type viscometer and compared with those evaluated by a rotational viscometer.

Comparison of the effect of lithium bentonite and sodium bentonite on the engineering properties of bentonite-cement-sodium silicate grout

  • Zhou, Yao;Wang, Gui H.;Chang, Yong H.
    • Advances in concrete construction
    • /
    • 제9권3호
    • /
    • pp.279-287
    • /
    • 2020
  • This paper focuses on the engineering properties of Bentonite-Cement-Sodium silicate (BCS) grout, which was prepared by partially replacing the ordinary Portland cement in Cement-Sodium silicate grout with lithium bentonite (Li-bent) and sodium bentonite (Na-bent), respectively. The effect of different Water-to-Solid ratio (W/S) and various replacement percentages of bentonite on the apparent viscosity, bleeding, setting time, and early compressive strength of BCS grout were investigated. The XRD method was used to detect its hydration products. The results showed that both bentonites played a positive role in the stability of BCS grout, increased its apparent viscosity. Na-bent prolonged the setting time of BCS, while 5% of Li-bent shortened the setting time of BCS. The XRD analysis indicated that the hydration products between the mixture containing Na-bent and Li-bent did not differ much. Using bentonite as supplementary cementitious material (SCM) to replace partial cement is a promising way to cut down on carbon dioxide emissions and to produce low-cost, eco-friendly, non-toxic, and water-resistant grout. In addition, Li-bent was superior to Na-bent in improving the strength and the thickening of BCS grouts.