• Title/Summary/Keyword: apparent energy

Search Result 787, Processing Time 0.029 seconds

Application of SA-SVM Incremental Algorithm in GIS PD Pattern Recognition

  • Tang, Ju;Zhuo, Ran;Wang, DiBo;Wu, JianRong;Zhang, XiaoXing
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권1호
    • /
    • pp.192-199
    • /
    • 2016
  • With changes in insulated defects, the environment, and so on, new partial discharge (PD) data are highly different from the original samples. It leads to a decrease in on-line recognition rate. The UHF signal and pulse current signal of four kinds of typical artificial defect models in gas insulated switchgear (GIS) are obtained simultaneously by experiment. The relationship map of ultra-high frequency (UHF) cumulative energy and its corresponding apparent discharge of four kinds of typical artificial defect models are plotted. UHF cumulative energy and its corresponding apparent discharge are used as inputs. The support vector machine (SVM) incremental method is constructed. Examples show that the PD SVM incremental method based on simulated annealing (SA) effectively speeds up the data update rate and improves the adaptability of the classifier compared with the original method, in that the total sample is constituted by the old and new data. The PD SVM incremental method is a better pattern recognition technology for PD on-line monitoring.

1-Heptene, 2-Heptene 및 3-Heptene의 발화특성에 관한 연구 (A Study on Autoignition Characteristics of 1-Heptene, 2-Heptene and 3-Heptene.)

  • 최재욱;목연수;김상렬
    • 한국안전학회지
    • /
    • 제5권2호
    • /
    • pp.17-23
    • /
    • 1990
  • This study was performed by experiments with ASTM's apparatus for determination of autoignition temperature to obtain autoignition characteristics of 1-Heptene, 2-Heptene and 3-Heptene, respectively. As results, minimum autoignition temperatures (MAIT) of 1-Heptene, 2-Heptene and 3-Heptene were 246$^{\circ}C$, 248$^{\circ}C$ and 254$^{\circ}C$, respectively and each dropping volume of these temperatures was 0.25$m\ell$, 0.20$m\ell$ and 0.20$m\ell$. Instantaneous ignition temperatures measured at each dropping volume of Heptene were 371$^{\circ}C$, 357$^{\circ}C$ and 342$^{\circ}C$, respectively. Relation ignition delay time with ignition temperature at minimum autoignition temperature agreed well with Semenov's equation, and the values of apparent activation energy from this equation were 47Kca1/mo1 for 1-Heptene, 35Kca1/mo1 for 2-Heptene and 29Kca1/mo1 for 3-Heptene. It was found that the values of apparent activation energy decreased as the position of double bond changed from end to center in C-C chain.

  • PDF

잠재적 시간 오차에 따른 현휘의 발생 방지를 위한 최적 블라인드 제어 (Optimum Blind Control to Prevent Glare Considering Potential Time Error)

  • 성윤복
    • 한국태양에너지학회 논문집
    • /
    • 제32권2호
    • /
    • pp.74-86
    • /
    • 2012
  • For the improvement of environmental comfort in the buildings with the blind control, the objective of this study is to prevent the direct glare caused by the daylight inlet. During the process of solar profile prediction, time are significant factors that may cause error and glare during the blind control. This research proposes and evaluates the correction and control method to minimize prediction error. For the local areas with different longitude and local standard meridian, error occurred in the process of the time conversion from local standard time to apparent solar time. In order to correct error in time conversion, apparent solar time should be recalculated after adjusting the day of year and the equation of time. To solve the problems by the potential time errors, control method is suggested to divide the control sections using the calibrated fitting-curve and this method is verified through simulations. The proposed correction and control method, which considered potential time errors by loop lop leap years, could solve the problems about direct glare caused by daylight inlet on the work-plane according to the prediction errors of solar profile. And also these methods could maximize daylight inlet and solar heat gain, because the blocked area on windows could be minimized.

Effect of the Calcination Temperature and Li(I) Doping on Ethanol Sensing Properties in p-Type CuO Thin Films

  • Choi, Yun-Hyuk
    • 한국재료학회지
    • /
    • 제29권12호
    • /
    • pp.764-773
    • /
    • 2019
  • The gas response characteristic toward C2H5OH has been demonstrated in terms of copper-vacancy concentration, hole density, and microstructural factors for undoped/Li(I)-doped CuO thin films prepared by sol-gel method. For the films, both concentrations of intrinsic copper vacancies and electronic holes decrease with increasing calcination temperature from 400 to 500 to 600 ℃. Li(I) doping into CuO leads to the reduction of copper-vacancy concentration and the enhancement of hole density. The increase of calcination temperature or Li(I) doping concentration in the film increases both optical band gap energy and Cu2p binding energy, which are characterized by UV-vis-NIR and X-ray photoelectron spectroscopy, respectively. The overall hole density of the film is determined by the offset effect of intrinsic and extrinsic hole densities, which depend on the calcination temperature and the Li(I) doping amount, respectively. The apparent resistance of the film is determined by the concentration of the structural defects such as copper vacancies, Li(I) dopants, and grain boundaries, as well as by the hole density. As a result, it is found that the gas response value of the film sensor is directly proportional to the apparent sensor resistance.

Crack Growth Behaviors of Cement Composites by Fractal Analysis

  • Won, Jong-Pil;Kim, Sung-Ae
    • KCI Concrete Journal
    • /
    • 제14권1호
    • /
    • pp.30-35
    • /
    • 2002
  • The fractal geometry is a non-Euclidean geometry which describes the naturally irregular or fragmented shapes, so that it can be applied to fracture behavior of materials to investigate the fracture process. Fractal curves have a characteristic that represents a self-similarity as an invariant based on the fractal dimension. This fractal geometry was applied to the crack growth of cementitious composites in order to correlate the fracture behavior to microstructures of cementitious composites. The purpose of this study was to find relationships between fractal dimensions and fracture energy. Fracture test was carried out in order to investigate the fracture behavior of plain and fiber reinforced cement composites. The load-CMOD curve and fracture energy of the beams were observed under the three point loading system. The crack profiles were obtained by the image processing system. Box counting method was used to determine the fractal dimension, D$_{f}$. It was known that the linear correlation exists between fractal dimension and fracture energy of the cement composites. The implications of the fractal nature for the crack growth behavior on the fracture energy, G$_{f}$ is apparent.ent.

  • PDF

Evaluation of Amino Acid and Energy Utilization in Feedstuff for Swine and Poultry Diets

  • Kong, C.;Adeola, O.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권7호
    • /
    • pp.917-925
    • /
    • 2014
  • An accurate feed formulation is essential for optimizing feed efficiency and minimizing feed cost for swine and poultry production. Because energy and amino acid (AA) account for the major cost of swine and poultry diets, a precise determination of the availability of energy and AA in feedstuffs is essential for accurate diet formulations. Therefore, the methodology for determining the availability of energy and AA should be carefully selected. The total collection and index methods are 2 major procedures for estimating the availability of energy and AA in feedstuffs for swine and poultry diets. The total collection method is based on the laborious production of quantitative records of feed intake and output, whereas the index method can avoid the laborious work, but greatly relies on accurate chemical analysis of index compound. The direct method, in which the test feedstuff in a diet is the sole source of the component of interest, is widely used to determine the digestibility of nutritional components in feedstuffs. In some cases, however, it may be necessary to formulate a basal diet and a test diet in which a portion of the basal diet is replaced by the feed ingredient to be tested because of poor palatability and low level of the interested component in the test ingredients. For the digestibility of AA, due to the confounding effect on AA composition of protein in feces by microorganisms in the hind gut, ileal digestibility rather than fecal digestibility has been preferred as the reliable method for estimating AA digestibility. Depending on the contribution of ileal endogenous AA losses in the ileal digestibility calculation, ileal digestibility estimates can be expressed as apparent, standardized, and true ileal digestibility, and are usually determined using the ileal cannulation method for pigs and the slaughter method for poultry. Among these digestibility estimates, the standardized ileal AA digestibility that corrects apparent ileal digestibility for basal endogenous AA losses, provides appropriate information for the formulation of swine and poultry diets. The total quantity of energy in feedstuffs can be partitioned into different components including gross energy (GE), digestible energy (DE), metabolizable energy (ME), and net energy based on the consideration of sequential energy losses during digestion and metabolism from GE in feeds. For swine, the total collection method is suggested for determining DE and ME in feedstuffs whereas for poultry the classical ME assay and the precision-fed method are applicable. Further investigation for the utilization of ME may be conducted by measuring either heat production or energy retention using indirect calorimetry or comparative slaughter method, respectively. This review provides information on the methodology used to determine accurate estimates of AA and energy availability for formulating swine and poultry diets.

Nutrient Digestibility and Metabolizable Energy Content of Mucuna pruriens Whole Pods Fed to Growing Pelibuey Lambs

  • Loyra-Tzab, Enrique;Sarmiento-Franco, Luis Armando;Sandoval-Castro, Carlos Alfredo;Santos-Ricalde, Ronald Herve
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권7호
    • /
    • pp.981-986
    • /
    • 2013
  • The nutrient digestibility, nitrogen balance and in vivo metabolizable energy supply of Mucuna pruriens whole pods fed to growing Pelibuey lambs was investigated. Eight Pelibuey sheep housed in metabolic crates were fed increasing levels of Mucuna pruriens pods: 0 (control), 100 (Mucuna100), 200 (Mucuna200) and 300 (Mucuna300) g/kg dry matter. A quadratic (p<0.002) effect was observed for dry matter (DM), neutral detergent fibre (aNDF), nitrogen (N) and gross energy (GE) intakes with higher intakes in the Mucuna100 and Mucuna200 treatments. Increasing M. pruriens in the diets had no effect (p>0.05) on DM and GE apparent digestibility (p<0.05). A linear reduction in N digestibility and N retention was observed with increasing mucuna pod level. This effect was accompanied by a quadratic effect (p<0.05) on fecal-N and N-balance which were higher in the Mucuna100 and Mucuna200 treatments. Urine-N excretion, GE retention and dietary estimated nutrient supply (metabolizable protein and metabolizable energy) were not affected (p>0.05). DM, N and GE apparent digestibility coefficient of M. pruriens whole pods obtained through multiple regression equations were 0.692, 0.457, 0.654 respectively. In vivo DE and ME content of mucuna whole pod were estimated in 11.0 and 9.7 MJ/kg DM. It was concluded that whole pods from M. pruriens did not affect nutrient utilization when included in an mixed diet up to 200 g/kg DM. This is the first in vivo estimation of mucuna whole pod ME value for ruminants.

The Availability of Energy and Protein, with Respect to Uric Acid, of Yellow-seeded Rapeseed Meal in Broiler Diets

  • Saki, A.A.;Mahmoudi, H.;Tabatabaei, M.M.;Ahmadi, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권11호
    • /
    • pp.1624-1628
    • /
    • 2008
  • Experiments were conducted to evaluate the nutritional value of yellow-seeded rapeseed meal (YRSM). In the first experiment nutrient retention was recorded by 48 Arbor Acres-broiler chickens (28-d old) to determine AMEn (nitrogen-corrected apparent metabolizable energy), coefficient of apparent protein digestibility based on ileal digesta nitrogen, excreta nitrogen and uric acid nitrogen. The second experiment was carried out with 304 Arbor Acres-broiler chickens to compare effects of SBM (soybean meal) and YRSM on performance, carcass and digestive tract status. In the control treatment, SBM was replaced by graded levels of YRSM at 15, 22.5 and 30% of diet. Digestibility of YRSM protein was significantly lower (p<0.001) than SBM protein. The protein digestibility based on ileal measurement was significantly higher (p<0.001) than protein digestibility from excreta samples. There was no significant difference (p>0.001) between ileal and excreta digestibility of protein based on uric acid. AMEn as a fraction of gross energy was 0.54 in SBM and 0.45 in YRSM. With the exception of 30% YRSM, other YRSM treatments resulted in major effects on length and weight of the gastrointestinal tract. The results of this study have shown no adverse effect on performance as well as protein digestibility and energy value in response to replacement of SBM by YRSM with the exception of 22.5 and 30% YRSM.

불포화토의 열·탄소성 거동 분석을 위한 Barcelona Basic Model 소개 (Introduction of Barcelona Basic Model for Analysis of the Thermo-Elasto-Plastic Behavior of Unsaturated Soils)

  • 이창수;윤석;이재원;김건영
    • 터널과지하공간
    • /
    • 제29권1호
    • /
    • pp.38-51
    • /
    • 2019
  • Barcelona Basic Model(BBM)은 응력의 변화에 따른 부피변화뿐만 아니라 흡입력의 변화에 따른 팽윤거동을 설명할 수 있으며, 흡입력 변화에 따른 점착력과 선행압밀응력의 변화와 온도변화에 따른 선행압밀응력의 변화를 고려할 수 있다. 따라서, 고준위방사성폐기물 처분시스템에서 공학적방벽재로 고려되고 있는 벤토나이트 완충재의 열-수리-역학적 복합거동을 예측 및 분석하는 것에 많이 활용되고 있다. 그러나 우리나라의 암반 및 지반 공학자들에게 잘 알려져 있지 않기 때문에 BBM을 소개하고자 한다. BBM은 불포화 토질의 역학적 거동을 모사하기 위해 Modified Cam Clay(MCC) 모델을 확장하여 만들어 졌기 때문에 본 고에서는 먼저 MCC 모델을 간략하게 소개하고, 열-탄소성 모델인 BBM을 상세히 소개하였다.

나노파우더형 Co/Al2O3 촉매를 활용한 NaBH4 가수분해반응 특성 연구 (A Study on Characteristics of NaBH4 Hydrolysis using Co/Al2O3 Nanopowder Catalyst)

  • 윤성모;이태훈;오택현
    • 한국수소및신에너지학회논문집
    • /
    • 제33권4호
    • /
    • pp.343-352
    • /
    • 2022
  • Co/Al2O3 nanopowder was used as a catalyst to investigate the effect of catalyst support, reduction temperature, sodium borohydride (NaBH4) concentration, sodium hydroxide (NaOH) concentration, and reaction temperature on the characteristics of NaBH4 hydrolysis. The Co/Al2O3 nanopowder showed a high catalytic activity among various catalysts. Catalyst reduction at 250℃ exhibited a relatively good activity. The activity decreased with an increase in the NaBH4 concentration. Conversely, the activity increased and then decreased with an increase in the NaOH concentration. Additionally, the activity increased with an increase in the reaction temperature. The value of apparent activation energy was 40.81 kJ/mol, which was lower than the other Co-based catalysts. Thus, Co/Al2O3 nanopowder catalyst can be widely used for NaBH4 hydrolysis owing to its superior catalytic activity.