• 제목/요약/키워드: apoptotic nuclei

검색결과 127건 처리시간 0.023초

두충이 좌골신경손상 흰쥐의 후지 근육위축에 미치는 영향 (Effect of Eucommiae Cortex on Hind Limb Muscle Atrophy of Sciatic Nerve Transectioned Rats)

  • 조재헌;김건식;차재덕;이현삼;최현;정혁상;손낙원;손영주
    • 동의생리병리학회지
    • /
    • 제22권6호
    • /
    • pp.1454-1461
    • /
    • 2008
  • In oriental medicine, it is known that Eucommiae Cortex (EC) has strengthening and rehabilitative effects on the bone-muscle dysfunction. This study aimed to evaluate the effect of EC on the skeletal muscle atrophy. The muscle atrophy was induced by unilateral transection of the sciatic nerve in Sprague-Dawley rats. EC (water-extract, 170mg/100 g body weight) was treated once a day for 12 days. In this study, the effect of EC examined the muscle weight of hind limb, cross section areas of muscle fibers, fiber type compositions, apoptosis related factors (Bax and Bcl-2). EC reduced muscle atrophy in soleus (SOL), medial gastrocnemius (MGT), extensor digitorum longus, and tibialis posterior significantly in the damaged hind limb. EC increased type-I muscle fibers and decreased type-II muscle fibers significantly in SOL of the damaged hind limb. EC enlarged cross section areas of type-I and type-II muscle fibers significantly in SOL. EC enlarged cross section areas of type-I and type-II muscle fibers significantly in. EC reduced apoptotic nuclei and atrophic muscle fibers in SOL and MGT. EC reduced Bax positive muscle nuclei in SOL and MGT. EC up-regulated Bcl-2 positive muscle fibers in SOL and MGT. These results suggest that EC has an anti-atrophic effect and anti-apoptotic effect against myonuclear apoptosis induced by the peripheral nerve damage.

일시적 대뇌허혈에 의한 gerbil 해마의 피라밋층에 조직학적 변화 (Histological changes on pyramidal layer of hippocampus following transient cerebral ischemia in gerbils)

  • 양제훈;고필옥;곽수동
    • 대한수의학회지
    • /
    • 제41권4호
    • /
    • pp.467-475
    • /
    • 2001
  • Cardiac arrest, hypoxia, shock or seizure has been known to induce cerebral ischemia. This study was designed to investigate the effect of ischemia on hippocampal pyramidal layer induced by transient bilateral occlusion of the common carotid arteries. Mature Mongolian gerbils were sacrificed at days 2, 4, and 7 after carotid occlusion for 10 minutes. Sham-operated gerbils of control group were subjected to the same protocol except for carotid occlusion. During operation for ischemia, body temperature was maintained $37{\pm}0.5^{\circ}C$ in all gerbils. Paraffin-embedded brain tissue blocks were cut into coronal slices and stained with H-E stain or immunostain by TUNEL method. Neurons with the oval and prominent nucleus and without the eosinophilic cytoplasm in the subfield of hippocamapal pyramidal layer were calculated as to be viable neurons. Their chromatins were condensed or clumped. Their nuclei appeared multiangular or irregularly shrinked. The width of the pyramidal layer was reduced due to the loss of nuclei. At day 2 after reperfusion, some neurons in the CA1 subfield were slightly eosinophilic. But most neurons in the CA2 subfield were strongly eosinophilic. At day 4 day, most neurons in the CA1 subfield were severely damaged and at day 7 day, only a few survived neurons were observed. Survived neurons per longitudinal 1mm sector in the CA1, CA2, CA3, and CA4 subfields of pyramidal layer were investigated. At day 2, the mean numbers of pyramidal neurons in CA1, CA2, CA3, and CA4 subfiedls were 104.5/mm (54.3%), 51.0/mm (33.8%), 105.5/mm (85.6%), and 124.3/mm (93.5%) compared to the nonischemic control group, respectively. At day 4, the mean numbers of pyramidal neurons in CA1, CA2, CA3, and CA4 subfields were 3.2/mm (1.7%), 51.5/mm(34.2%), 95.3/mm (77.4%), and 112.5/mm (84.6%), respectively. At day 7, the mean numbers of pyramidal neurons in CA1, CA2, CA3, and CA4 subfiedls were 0.8/mm (0.4%), 5.7/mm(3.8%), 9.8/mm (8.0%), and 5.0/mm (3.7%), respectively. The mean numbers of apoptotic positive neurons in the CA1 subfield at day 2, 4, and 7 after reperfusion were 67.8/mm, 153.2/mm and 123.7/mm, respectively. These results suggest that the transient cerebral ischemia cause severe damages in most neurons at day 7 and that the prosminent apoptotic positive neurons in hippocampal pyramidal layer are the delayed neuronal death induced by ischemia.

  • PDF

Neuroprotective effects of hesperetin on H2O2-induced damage in neuroblastoma SH-SY5Y cells

  • Ha-Rin Moon;Jung-Mi Yun
    • Nutrition Research and Practice
    • /
    • 제17권5호
    • /
    • pp.899-916
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Oxidative stress is a fundamental neurodegenerative disease trigger that damages and decimates nerve cells. Neurodegenerative diseases are chronic central nervous system disorders that progress and result from neuronal degradation and loss. Recent studies have extensively focused on neurodegenerative disease treatment and prevention using dietary compounds. Heseperetin is an aglycone hesperidin form with various physiological activities, such as anti-inflammation, antioxidant, and antitumor. However, few studies have considered hesperetin's neuroprotective effects and mechanisms; thus, our study investigated this in hydrogen peroxide (H2O2)-treated SH-SY5Y cells. MATERIALS/METHODS: SH-SY5Y cells were treated with H2O2 (400 µM) in hesperetin absence or presence (10-40 µM) for 24 h. Three-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assays detected cell viability, and 4',6-diamidino-2-phenylindole staining allowed us to observe nuclear morphology changes such as chromatin condensation and apoptotic nuclei. Reactive oxygen species (ROS) detection assays measured intracellular ROS production; Griess reaction assays assessed nitric oxide (NO) production. Western blotting and quantitative polymerase chain reactions quantified corresponding mRNA and proteins. RESULTS: Subsequent experiments utilized various non-toxic hesperetin concentrations, establishing that hesperetin notably decreased intracellular ROS and NO production in H2O2-treated SH-SY5Y cells (P < 0.05). Furthermore, hesperetin inhibited H2O2-induced inflammation-related gene expression, including interluekin-6, tumor necrosis factor-α, and nuclear factor kappa B (NF-κB) p65 activation. In addition, hesperetin inhibited NF-κB translocation into H2O2-treated SH-SY5Y cell nuclei and suppressed mitogen-activated protein kinase protein expression, an essential apoptotic cell death regulator. Various apoptosis hallmarks, including shrinkage and nuclear condensation in H2O2-treated cells, were suppressed dose-dependently. Additionally, hesperetin treatment down-regulated Bax/Bcl-2 expression ratios and activated AMP-activated protein kinase-mammalian target of rapamycin autophagy pathways. CONCLUSION: These results substantiate that hesperetin activates autophagy and inhibits apoptosis and inflammation. Hesperetin is a potentially potent dietary agent that reduces neurodegenerative disease onset, progression, and prevention.

Pro-apoptotic Effect of Pifithrin-α on Preimplantation Porcine In vitro Fertilized Embryo Development

  • Mulligan, Brendan;Hwang, Jae-Yeon;Kim, Hyung-Min;Oh, Jong-Nam;Choi, Kwang-Hwan;Lee, Chang-Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권12호
    • /
    • pp.1681-1690
    • /
    • 2012
  • The aim of this study was to investigate the impact of a reported p53 inhibitor, pifithrin-${\alpha}$ (PFT-${\alpha}$), on preimplantation porcine in vitro fertilized (IVF) embryo development in culture. Treatment of PFT-${\alpha}$ was administered at both early (0 to 48 hpi), and later stages (48 to 168 hpi) of preimplantation development, and its impact upon the expression of five genes related to apoptosis (p53, bak, bcl-xL, p66Shc and caspase3), was assessed in resulting d 7 blastocysts, using real-time quantitative PCR. Total cell numbers, along with the number of apoptotic nuclei, as detected by the in situ cell death detection assay, were also calculated on d 7 in treated and non-treated control embryos. The results indicate that PFT-${\alpha}$, when administered at both early and later stages of porcine IVF embryo development, increases the incidence of apoptosis in resulting blastocysts. When administered at early cleavage stages, PFT-${\alpha}$ treatment was shown to reduce the developmental competence of porcine IVF embryos, as well as reducing the quality of resulting blastocysts in terms of overall cell numbers. In contrast, at later stages, PFT-${\alpha}$ administration resulted in marginally increased blastocyst development rates amongst treated embryos, but did not affect cell numbers. However, PFT-${\alpha}$ treatment induced apoptosis and apoptotic related gene expression, in all treated embryos, irrespective of the timing of treatment. Our results indicate that PFT-${\alpha}$ may severely compromise the developmental potential of porcine IVF embryos, and is a potent apoptotic agent when placed into porcine embryo culture media. Thus, caution should be exercised when using PFT-${\alpha}$ as a specific inhibitor of p53 mediated apoptosis, in the context of porcine IVF embryo culture systems.

Antioxidant Effect of Edaravone on the Development of Preimplantation Porcine Embryos against Hydrogen Peroxide-Induced Oxidative Stress

  • Do, Geon-Yeop;Kim, Jin-Woo;Chae, Sung-Kyu;Ahn, Jae-Hyun;Park, Hyo-Jin;Park, Jae-Young;Yang, Seul-Gi;Koo, Deog-Bon
    • 한국수정란이식학회지
    • /
    • 제30권4호
    • /
    • pp.289-298
    • /
    • 2015
  • Edaravone (Eda) is a potent scavenger of inhibiting free radicals including hydroxyl radicals ($H_2O_2$). Reactive oxygen species (ROS) such as $H_2O_2$ can alter most kinds of cellular molecules such as lipids, proteins and nucleic acids, cellular apoptosis. In addition, oxidative stress from over-production of ROS is involved in the defective embryo development of porcine. Previous study reported that Eda has protective effects against oxidative stress-like cellular damage. However, the effect of Eda on the preimplantation porcine embryos development under oxidative stress is unclear. Therefore, in this study, the effects of Eda on blastocyst development, expression levels of ROS, and apoptotic index were first investigated in preimplantation porcine embryos. After in vitro fertilization, porcine embryos were cultured for 6 days in PZM medium with Eda ($10{\mu}M$), $H_2O_2$ ($200{\mu}M$), and Eda+$H_2O_2$ treated group, respectively. Rate of blastocyst development was significantly increased (P<0.05) in the Eda treated group compared with only $H_2O_2$ treated group. And, we measured intracellular levels of ROS by DCF-DA staining methods and investigated numbers of apoptotic nuclei by TUNEL assay analysis is in porcine blastocyst, respectively. Both intracellular ROS levels and the numbers of apoptotic nucleic were significantly decreased (P<0.05) in porcine blastocysts cultured with Eda ($10{\mu}M$). More over, the total cell number of blastocysts were significantly increased (P<0.05) in the Eda-treated group compared with untreated group and the only $H_2O_2$ treated group. Based on the results, Eda was related to regulate as antioxidant-like function according to the reducing ROS levels during preimplantation periods. Also, Eda is beneficial for developmental competence and preimplantation quality of porcine embryos. Therefore, we concluded that Eda has protective effect to ROS derived apoptotic stress in preimplantation porcine embryos.

Effects of Trichostatin A and 5-aza-2'deoxycytidine on Nuclear Reprogramming in Pig Cloned Embryos

  • Lee, Sung Hyun;Xu, Yong-Nan;Heo, Young-Tae;Cui, Xiang-Shun;Kim, Nam-Hyung
    • Reproductive and Developmental Biology
    • /
    • 제37권4호
    • /
    • pp.269-279
    • /
    • 2013
  • Low efficiency of somatic cell nuclear transfer (SCNT) is attributed to incomplete reprogramming of transfered nuclei into oocytes. Trichostatin A (TSA), histone deacetylase inhibitor and 5-aza-2'deoxycytidine (5-aza-dC), DNA methylation inhibitor has been used to enhance nuclear reprogramming following SCNT. However, it was not known molecular mechanism by which TSA and 5-aza-dC improve preimplantation embryo and fetal development following SCNT. The present study investigates embryo viability and gene expression of cloned porcine preimplantation embryos in the presence and absence of TSA and 5-aza-dC as compared to embryos produced by parthenogenetic activation. Our results indicated that TSA treatment significantly improved development. However 5-aza-dC did not improve development. Presence of TSA and 5-aza-dC significantly improved total cell number, and also decreased the apoptotic and autophagic index. Three apoptotic-related genes, Bak, Bcl-xL, and Caspase 3 (Casp3), and three autophagic-related genes, ATG6, ATG8, and lysosomal-associated membrane protein 2 (LAMP2), were measured by real time RT-PCR. TSA and 5-aza-dC treatment resulted in high expression of anti-apoptotic gene Bcl-xL and low pro-apoptotic gene Bak expression compared to untreated NT embryos or parthenotes. Furthermore, LC3 protein expression was lower in NT-TSA and NT-5-aza-dC embryos than those of NT and parthenotes. In addition, TSA and 5-aza-dC treated embryos displayed a global acetylated histone H3 at lysine 9 and methylated DNA H3 at lysine 9 profile similar to the parthenogenetic blastocysts. Finally, we determined that several DNA methyltransferase genes Dnmt1, Dnmt3a and Dnmt3b. NT blastocysts showed higher levels Dnmt1 than those of the TSA and 5-aza-dC blastocysts. Dnmt3a is lower in 5-aza-dC than NT, NTTSA and parthenotes. However, Dnmt3b is higher in 5-aza-dC than NT and NTTSA. These results suggest that TSA and 5-aza-dC positively regulates nuclear reprogramming which result in modulation of apoptosis and autophagy related gene expression and then reduce apoptosis and autophagy. In addition, TSA and 5-aza-dC affects the acetylated and methylated status of the H3K9.

Accelerating Effect of $TNF-{\alpha}$ on the Rhus verniciflua-induced Growth Inhibition and Apoptosis in Human Osteosarcoma Cells

  • Kim, Hyun-Duck;Kook, Sung-Ho;Kim, Beom-Tae;Kim, Jong-Ghee;Jeon, Young-Mi;Lee, Jeong-Chae
    • Natural Product Sciences
    • /
    • 제11권1호
    • /
    • pp.45-49
    • /
    • 2005
  • Previously, a flavonoid fraction, which consisted mainly of protocatechuic acid, fustin, fisetin, sulfuretin, and butein, here named RCMF [${\underline{R}}hus$ verniciflua Stokes (RVS) ${\underline{c}}hloroform-{\underline{m}}ethanol\;{\underline{f}}raction$], was prepared from a crude acetone extract of RVS which is traditionally used as a food additive and as an herbal medicine. In the present study, we investigated the effects of $TNF-{\alpha}$ on RCMF-induced growth inhibition and apoptosis induction using human osteosarcoma (HOS) cells. The results from tritium uptake and MTT assays showed that $TNF-{\alpha}$ treatment itself (10 ng/ml) did not induce any cytotoxicity, but it actively accelerated RCMF-mediated cytotoxicity of HOS cells. RCMF-induced cytotoxicity and its facilitation by $TNF-{\alpha}$ was verified to be apoptotic, based on the increased DNA fragmentation and low fluorescence intensity in nuclei after propidium iodide (PI) staining of HOS cells. This speculation was further demonstrated by monitoring the Annexin V/PI double staining which could discriminate the difference between apoptotic and necrotic deaths. Collectively, our findings indicate that $TNF-{\alpha}$ accelerates RCMF-induced cytotoxicity in HOS cells.

Granulocyte Macrophage Colony Stimulating Factor에 의한 생쥐 초기 배아 발생의 신호전달 (Granulocyte Macrophage-Colony Stimulating Factor Signaling in Development of Mouse Embryos)

  • 서혜영;정규회;강병문;계명찬
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제30권1호
    • /
    • pp.5-14
    • /
    • 2003
  • Objective: Present study was aimed to verify the effect of granulocyte macrophage-colony stimulating factor (GM-CSF) in the preimplantation development of mouse embryos and the involvement of the mitogen activated protein kiase (MAPK) in the GM-CSF signaling. Methods: Two-cell embryos were cultured for 96 h in the presence or absence of GM-CSF (0, 0.4, 2, 10 ng/ml) and PD98059, a MEK inhibitor (10 ${\mu}M$). Morphological development, cell number per blastocyst, and apoptotic nuclei, were eamined. MAPK activity of embryonic immunoprecipitate by MAPK (ERK1/2) antibody was measured by in vitro phosphorylation of myelin basic protein. Results: At post hCG 122 h the embryonic development among the experimental groups was significantly different (p=0.018). The rate of blastocyst development and cell number per embryo were the highest in 2 ng/ml GM-CSF treatment group. The percent of apoptotic cells of the GM-CSF-treated embryos was the lowest among the group. In blastocysts, GM-CSF treatment transiently increased MAPK activity. PD098059 attenuated the effect of GM-CSF on the morphological development, increase in cell number per blastocyst, down regulation of apoptosis, and upregulation of MAPK activity, suggesting that activation of MAPK cascade possibly mediated the embryotropic effect of GM-CSF. Conclusion: This result suggested that GM-CSF potentiated the development of preimplantation mouse embryos by activation of MAPK.

생지황(Rhemanniae Radix)이 Streptozotocin으로 유발된 고혈당 생쥐에 미치는 영향 (Effect of Rhemanniae Radix on the Hyperglycemic Mice Induced with Streptozotocin)

  • 김정상
    • 한국식품영양과학회지
    • /
    • 제33권7호
    • /
    • pp.1133-1138
    • /
    • 2004
  • 본 연구는 streptozotocin(STZ)을 투여하여 고혈당이 유발된 생쥐(UM군)에 생지황(Rhemanniae Radix) 전탕액의 투여(5.0 mL/kg/day, RR군)효과를 밝히기 위하여 수행하였다. STZ로 유발된 생쥐에 생지황 전탕액을 6주 동안 구강 투여한 후 혈당과 당내성 검사 및 췌장섬의 면역조직화학 검사를 하였다. 혈당수준은 RH군이 HM군에 비하여 2, 3, 5, 6주에서 유의성 있게 낮았으며, 당내성 검사 또한 RR군이 HM군에 비하여 우수한 결과를 보여 주었다. 6주 후 insulin-양성 5-세포들과 insulin-like growth factor-II 양성 물질들은 HM군에 비하여 RR군에서는 보다 높게 나타났다. HM군에서는 apoptosis 면역반응성 과립들이 췌장섬 전반에 걸쳐 관찰되었으나, RR군에서는 일부 세포들의 핵에서 면역반응성을 보여주었다. HM군에서는 대부분 췌장섬들이 파괴되어 소수 관찰되었으나 RR군은 다수 관찰되었다. 이와 같은 결과로 보아 생지황 전탕액은 STZ로 유발된 손상으로부터 췌장섬을 회복시키는 효과가 있는 것으로 사료된다.

Potentiation of Apoptin-Induced Apoptosis by Cecropin B-Like Antibacterial Peptide ABPs1 in Human HeLa Cervical Cancer Cell Lines is Associated with Membrane Pore Formation and Caspase-3 Activation

  • Birame, Basse Mame;Wang, Jigui;Yu, Fuxian;Sun, Jiazeng;Li, Zhili;Liu, Weiquan
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권6호
    • /
    • pp.756-764
    • /
    • 2014
  • Apoptin, a chicken anemia virus-encoded protein, induces apoptosis in chicken or human tumor cells, localizing in their nuclei as opposed to the cytoplasm of non-transformed cells. The present study was undertaken to investigate whether ABPs1 could potentiate apoptin-induced apoptosis in HeLa cells. ABPs1 and the apoptin genes were successfully cloned into pIRES2-EGFP expression vector and expressed in HeLa cells. We report that ABPs1 augments apoptin cell growth inhibition in a concentration- and time-dependent manner. The DAPI staining and scanning electron microscopy observations revealed apoptotic bodies and plasma membrane pores, which were attributed to apoptin and ABPs1, respectively. Further, ABPs1 in combination with apoptin was found to increase the expression of Bax and to decrease the expression of survivin compared with either agent alone or the control. The apoptotic rate of HeLa cells treated with ABPs1 and apoptin in combination for 48 h was 53.95%. The two-gene combination increased the caspase-3 activity of HeLa cells. Taken together, our study suggests that ABPs1 combined with apoptin significantly inhibits HeLa cell proliferation, and induces cell apoptosis through membrane defects, up-regulation of Bax expression, down-regulation of survivin expression, and activation of the caspase-3 pathway. Thus, the combination of ABPs1 and apoptin could serve as a means to develop novel gene therapeutic agents against human cervical cancer.