• Title/Summary/Keyword: apoptotic cells

Search Result 2,157, Processing Time 0.023 seconds

Application of Apoptogenic Pretreatment to Enhance Anti-tumor Immunity of Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF)-secreting CT26 Tumor Cells

  • Jun, Do-Youn;Jaffee, Elizabeth M;Kim, Young-Ho
    • IMMUNE NETWORK
    • /
    • v.5 no.2
    • /
    • pp.110-116
    • /
    • 2005
  • Background: As an attempt to develop a strategy to improve the protective immune response to GM-CSF-secreting CT26 (GM-CSF/CT26) tumor vaccine, we have investigated whether the apoptogenic treatment of GM-CSF/CT26 prior to vaccination enhances the induction of anti-tumor immune response in mouse model. Methods: A carcinogeninduced mouse colorectal tumor, CT26 was transfected with GM-CSF gene using a retroviral vector to generate GM-CSF-secreting CT26 (CT26/GM-CSF). The CT26/GM-CSF was treated with ${\gamma}$-irradiation or mitomycin C to induce apoptosis and vaccinated into BALB/c mice. After 7 days, the mice were injected with a lethal dose of challenge live CT26 cells to examine the protective effect of tumor vaccination in vivo. Results: Although both apoptotic and necrotic CT26/GM-CSF vaccines were able to enhance anti-tumor immune response, apoptotic CT26/GM-CSF induced by pretreatment with ${\gamma}$-irradiation (50,000 rads) was the most potent in generating the anti-tumor immunity, and thus 100% of mice vaccinated with the apoptotic cells remained tumor free for more than 60 days after tumor challenge. Conclusion: Apoptogenic pretreatment of GM-CSF-secreting CT26 tumor vaccine by ${\gamma}$-irradiation (50,000 rads) resulted in a significant enhancement in inducing the protective anti-tumor immunity. A rapid induction of apoptosis of CT26/GM-CSF tumor vaccine at the vaccine site might be critical for the enhancement in anti-tumor immune response to tumor vaccine.

Evaluation of Anti-oxidative, Anti-thrombin, Anti-invasive and Pro-apoptotic Activities of Paeonia japonica (백작약(Paeonia japonica)의 항산화, 트롬빈 저해, 암전이 억제 및 암세포사멸 평가)

  • Kim, Jun-Ho;Kim, Eun-Jung
    • Korean Journal of Plant Resources
    • /
    • v.31 no.1
    • /
    • pp.16-23
    • /
    • 2018
  • Paeonia japonica is a perennial flowering plant used in traditional medicine therapy. The purpose of this study was to investigate the effect of water extract and solvent fractions obtained from P. japonica on anti-oxidative, anti-thrombin, anti-invasive and pro-apoptotic activities in YD-10B cells, human oral squamous carcinoma cell line. Water fraction revealed the highest extraction yield at 11.44% (w/w). Anti-oxidative activity was the highest in ethyl acetate fraction (85.13%). In the thrombin inhibitory activity test, ethyl fraction was the highest, with a value of 87.54%. Release and activation of MMP-2/pro-MMP-2 ratio in thrombin-treated YD-10B cells were significantly inhibited in the ethyl acetate fraction. At a concentration of $120{\mu}g/m{\ell}$ water extract and solvent fractions of P. japonica inhibited cell proliferation in YD-10B cells except water fraction. Pro-apoptotic effect on human oral squamous carcinoma cell using the Bax/Bcl-2 ratio analysis was higher in water extract than other fractions. These findings suggest that the ethyl acetate fraction of P. japonica potentiates a promising antioxidant, anti-thrombin and anti-invasive agents.

Protective effect of furosin isolated from Euphorbia helioscopia against glutamate-induced HT22 cell death (등대(燈臺)풀 유래 Furosin의 glutamate에 의한 HT22 세포 사멸 억제 효과)

  • Baek, Ji Yun;Song, Ji Hoon;Choi, Sung Youl
    • The Journal of Korean Medicine
    • /
    • v.39 no.1
    • /
    • pp.35-43
    • /
    • 2018
  • Objectives: In the brain, glutamate is the most important excitable neurotransmitter in physiological and pathological conditions. However, the high level of glutamate induces neuronal cell death due to exitotoxicity and oxidative stress. The present study investigated to evaluate a possible neuroprotective effect of furosin isolated from Euphorbia helioscopia against glutamate-induced HT22 cell death. Methods: Furosin was isolated from methanol extract of Euphorbia helioscopia and examined whether it protects glutamate-induced neuronal cell death. The cell viability was determined using Ez-Cytox assay. Anti-oxidative effect of furosin was determined by DPPH scavenging activities, and the levels of intracellular reactive oxygen species (ROS) were determined by the fluorescent intensity after staining the cells with $H_2DCFDA$. To evaluate apoptotic cell death, we performed nuclear staining and image-based cytometeric analysis. Results: The cell viability was significantly increased by treatement with furosin compared with the treatment with glutamate. Furosin showed a strong DPPH radical scavenging activity ($EC50=1.83{\mu}M$) and prevented the accumulation of intra cellular ROS. Finally, the presence of 50 and $100{\mu}M$ furosin significantly the percentage of apoptotic cells compared with glutamate treatment. Conclusion: The present study found that furosin is a potent neuroprotectant against glutamate-induced oxidative stress through inhibition of apoptotic cell death induced by glutamate. Therefore, the present study suggests that furosin as a bioactive compound of E. helioscopia can be a useful source to develop a drug for the treatment of neurodegenerative diseases and acute brain injuries.

Protein Disulfide Isomerase Is Cleaved by Caspase-3 and -7 during Apoptosis

  • Na, Kyung Sook;Park, Byoung Chul;Jang, Mi;Cho, Sayeon;Lee, Do Hee;Kang, Sunghyun;Lee, Chong-Kil;Bae, Kwang-Hee;Park, Sung Goo
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.261-267
    • /
    • 2007
  • Apoptotic signals are typically accompanied by activation of aspartate-specific cysteine proteases called caspases, and caspase-3 and -7 play crucial roles in the execution of apoptosis. Previously, using the proteomic approach, protein disulfide isomerase (PDI) was found to be a candidate substrate of caspase-7. This abundant 55 kDa protein introduces disulfide bonds into proteins (via its oxidase activity) and catalyzes the rearrangement of incorrect disulfide bonds (via its isomerase activity). PDI is abundant in the ER but is also found in non-ER locations. In this study we demonstrated that PDI is cleaved by caspase-3 and -7 in vitro. In addition, in vivo experiment showed that it is cleaved during etoposide-induced apoptosis in HL-60 cells. Subcellular fractionation showed that PDI was also present in the cytosol. Furthermore, only cytosolic PDI was clearly digested by caspase-3 and -7. It was also confirmed by confocal image analysis that PDI and caspase-7 partially co-localize in both resting and apoptotic MCF-7 cells. Overexpression of cytosolic PDI (ER retention sequence deleted) inhibited cell death after an apoptotic stimulus. These data indicate that cytosolic PDI is a substrate of caspase-3 and -7, and that it has an anti-apoptotic action.

Protective Effect of Luteolin against β-Amyloid-induced Cell Death and Damage in BV-2 Microglial Cells (베타아밀로이드로 유도된 신경소교세포 사멸에 대한 루테올린의 보호효과 연구)

  • Park, Gyu Hwan;Jang, Jung-Hee
    • The Korea Journal of Herbology
    • /
    • v.28 no.6
    • /
    • pp.79-86
    • /
    • 2013
  • Objectives : The purpose of this study is to investigate neuroprotective effects and molecular mechanisms of luteolin against ${\beta}$-amyloid ($A{\beta}_{25-35}$)-induced oxidative cell death in BV-2 cells. Methods : The protective effects of luteolin against $A{\beta}_{25-35}$-induced cytotoxicity and apoptotic cell death were determined by MTT dye reduction assay and TUNEL staining, respectively. The apoptotic cell death was further analyzed by measuring mitochondrial transmembrane potential and expression of pro- and/or anti-apoptotic proteins. To elucidate the molecular mechanisms underlying the protective effects of luteolin, intracellular accumulation of reactive oxygen species, oxidative damages, and expression of antioxidant enzymes were examined. Results : Luteolin pretreatment effectively attenuated $A{\beta}_{25-35}$-induced apoptotic cell death indices such as DNA fragmentation, dissipation of mitochondrial transmembrane potential, increased Bax/Bcl-2 ratio, and activation of c-Jun N-terminal kinase and caspase-3 in BV-2 cells. Furthermore, $A{\beta}_{25-35}$-induced intracellular formation of reactive oxygen species and subsequent oxidative damages such as lipid peroxidation and depletion of endogenous antioxidant glutathione were suppressed by luteolin treatment. The neuroprotective effects of luteolin might be mediated by up-regulation of cellular antioxidant defense system via up-regulation of ${\gamma}$-glutamylcysteine ligase, a rate-limiting enzyme in the glutathione biosynthesis and superoxide dismutase, an enzyme involved in dismutation of superoxide anion into oxygen and hydrogen peroxide. Conclusions : These findings suggest that luteolin has a potential to protect against $A{\beta}_{25-35}$-induced neuronal cell death and damages thereby exhibiting therapeutic utilization for the prevention and/or treatment of Alzheimer's disease.

Induction of Apoptotic Cell Death by a Ceramide Analog in PC-3 Prostate Cancer Cells

  • Oh, Ji-Eun;So, Kwang-Sup;Lim, Se-Jin;Kim, Mie-Young
    • Archives of Pharmacal Research
    • /
    • v.29 no.12
    • /
    • pp.1140-1146
    • /
    • 2006
  • Ceramide analogs are potential chemotherapeutic agents. We report that a ceramide analog induces apoptosis in human prostate cancer cells. The ceramide analog induced cell death through an apoptotic mechanism, which was demonstrated by DNA fragmentation, the cleavage of poly ADP ribose polymerase (PARP), and a loss of membrane asymmetry. Treating the cells with ceramide analog resulted in the release of various proapoptotic mitochondrial proteins including cytochrome c and Smac/DIBLO into the cytosol, and a decrease in the mitochondrial membrane potential. In addition, the ceramide analog decreased the phospho-Akt and phospho-Bad levels. The expression of the antiapoptotic Bcl-2 decreased slightly with increasing Bax to Bcl-2 ratio. These results suggest that the ceramide analog induces apoptosis by regulating multiple signaling pathways that involve the mitochondrial pathway.

Effect of Botulinum Toxin A on Proliferation and Apoptosis in the T47D Breast Cancer Cell Line

  • Bandala, Cindy;Perez-Santos, Jose Luis Martin;Lara-Padilla, Eleazar;Delgado Lopez, Ma. Guadalupe;Anaya-Ruiz, Maricruz
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.891-894
    • /
    • 2013
  • The present study was performed to assess the activity of the botulinum toxin A on breast cancer cells. The T47D cell line was exposed to diverse concentrations of the botulinum toxin A and cell viability and apoptosis were estimated using MTT and propidium iodine/annexin V methods, respectively. Botulinum toxin A exerted greater cytotoxic activity in T47D cells in comparison with MCF10A normal cells; this appeared to be via apoptotic processes caspase-3 and -7. In conclusion, botulinum toxin A induces caspase-3 and -7 dependent apoptotic processes in the T47D breast cancer cell line.

Disruption of ATP binding destabilizes NPM/B23 and inhibits anti-apoptotic function

  • Choi, Joung-Woo;Lee, Sang-Bae;Ahn, Jee-Yin;Lee, Kyung-Hoon
    • BMB Reports
    • /
    • v.41 no.12
    • /
    • pp.840-845
    • /
    • 2008
  • Nucleophosmin/B23, a major nucleolar phosphoprotein, is overexpressed in actively proliferating cells. In this study, we demonstrate that B23 exclusively localizes in the nucleolus, whereas ATP depletion results in the redistribution of B23 throughout the whole nucleus and destabilizes B23 via caspase-3 mediated cleavage. Interestingly, ATP binding precedes PI(3,4,5)P3 binding at lysine 263 and ATP binding mutants fail to restore the anti-apoptotic functions of B23 in PC12 cells. Thus, the ATP-B23 interaction is required for the stability of the B23 protein and regulates cell survival, confining B23 within the nucleolus in PC12 cells.

Protein Kinase A Functions as a Negative Regulator of c-Jun N-terminal Kinase but not of p38 Mitogen-activated Protein Kinase in PC12 Cells

  • Hur, Kyu-Chung
    • Animal cells and systems
    • /
    • v.9 no.3
    • /
    • pp.173-179
    • /
    • 2005
  • Cyclic-AMP-dependent protein kinase (PKA) seems to function as a negative regulator of the c-Jun $NH_2-terminal$ kinase (JNK) signaling pathway. We demonstrate here that the activity of the PKA catalytic subunit (PKAc) is reduced in apoptotic PC12 pheochromocytoma cells. Apoptotic progress was inhibited by dibutyryl cyclic AMP (dbcAMP), an analog of cAMP. The rescue by dbcAMP was attributable to inhibition of the JNK but not of the p38 signaling pathway, due to the induction of PKA activity. JNK was present in immunocomplexes of PKAc, and PKAc phosphorylated JNK in vitro. Presence of p38 kinase, however, was not prominent in immunocomplexes of PKAc. Our data suggest that JNK is a target point of negative regulation by PKAc in the JNK signaling pathway.

Kanahia Laniflora Methanolic Extract Suppressed Proliferation of Human Non-Small Cell Lung Cancer A549 Cells

  • Alfaif, Mohammad Yahya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.10
    • /
    • pp.4755-4759
    • /
    • 2016
  • Introduction: Lung cancer is one of the most common cancers worldwide. In certain countries such as United States of America, it is the leading cause of related cancer mortality among both men and women. Natural products play an important role in overcoming the limitations of chemotherapy and radiotherapy. Objectives: In this study, we investigated the antiproliferative and apoptotic activities of Kanahia laniflora methanolic extract against human non-small cell lung cancer cells (A549). Methods: Sulforhodamine B colorimetric assays were used to determine the inhibitory effects of a leaf methanolic extract against A549 cells. Results: The extract showed strong cytotoxic activity against A549 cells with an $IC_{50}$ value of $0.13{\mu}g/ml$ compared to $0.21{\mu}g/ml$ for doxorubicin. The extract also significantly increased the percentage of apoptotic cells to 49.7% as compared to 1.4% and 47.4% for control and doxorubicin respectively. Conclusion: These results showed, for the first time, that a methanolic extract of Kanahia laniflora leaves can inhibit the proliferation of human non-small cell lung cancer cells (A549). Further attention to its potential as a new effective anticancer agent is warranted.