• Title/Summary/Keyword: apoptotic cells

Search Result 2,157, Processing Time 0.025 seconds

Oral administration of Grifola frondosa affect lipid metabolism and insulin signaling pathway on BKS. Cg-+Leprdb/+Leprdb/OlaHsd mouse

  • Yun, Seong-Bo;Kim, Dae-Young
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.203-211
    • /
    • 2021
  • Diabetic mellitus (DM) is a carbohydrate metabolic disorder that involves high blood sugar because insulin works abnormally. Type 2 diabetes accounts for most of them. However, diabetes treatments such as GLP-1 and DPP-4 inhibitors commonly caused side effects including gastrointestinal disorders. Grifola frondosa (G. frondosa) revealed various pharmacological effects in recent studies. It has a variety of anti-cancer polysaccharides through host-mediated mechanisms. D-fraction in G. frondosa has apoptotic effects, promoting myeloid cell proliferation and differentiation into granulocytes-macrophages. It has also been shown to reduce the survival rate of breast cancer cells. Though, no further study has been conducted on the specific effects of G. frondosa in the db/db mouse. Therefore, we would like to research the blood glucose improving effect of G. frondosa, a natural material, in type 2 diabetes model mouse, in this study. G. frondosa was administered to the disease model mouse (BKS.Cg-+Leprdb/+Leprdb/OlaHsd) for 8 weeks to monitor weight and blood glucose changes every week. And we evaluated anti-diabetes effects by checking biomarker changes shown through blood. Experiment did not show statistically significant weight differences, but control groups showed significantly higher weight gain than G. frondosa administered groups. We collected blood from the tail veins of the db/db mouse each week. As a result, the lowest blood sugar level was shown in the 500 mg/kg group of G. frondosa. Glucose in the blood was examined with HBA1c, and 7.8% was shown in the 500 mg/kg administration group, lower than in other groups. These results suggest the potential improvements of diabetes in G. frondosa.

Snail Promotes Cancer Cell Proliferation via Its Interaction with the BIRC3

  • Rho, Seung Bae;Byun, Hyun-Jung;Kim, Boh-Ram;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.30 no.4
    • /
    • pp.380-388
    • /
    • 2022
  • Snail is implicated in tumour growth and metastasis and is up-regulated in various human tumours. Although the role of Snails in epithelial-mesenchymal transition, which is particularly important in cancer metastasis, is well known, how they regulate tumour growth is poorly described. In this study, the possible molecular mechanisms of Snail in tumour growth were explored. Baculoviral inhibitor of apoptosis protein (IAP) repeat-containing protein 3 (BIRC3), a co-activator of cell proliferation during tumourigenesis, was identified as a Snail-binding protein via a yeast two-hybrid system. Since BIRC3 is important for cell survival, the effect of BIRC3 binding partner Snail on cell survival was investigated in ovarian cancer cell lines. Results revealed that Bax expression was activated, while the expression levels of anti-apoptotic proteins were markedly decreased by small interfering RNA (siRNA) specific for Snail (siSnail). siSnail, the binding partner of siBIRC3, activated the tumour suppressor function of p53 by promoting p53 protein stability. Conversely, BIRC3 could interact with Snail, for this reason, the possibility of BIRC3 involvement in EMT was investigated. BIRC3 overexpression resulted in a decreased expression of the epithelial marker and an increased expression of the mesenchymal markers. siSnail or siBIRC3 reduced the mRNA levels of matrix metalloproteinase (MMP)-2 and MMP-9. These results provide evidence that Snail promotes cell proliferation by interacting with BIRC3 and that BIRC3 might be involved in EMT via binding to Snail in ovarian cancer cells. Therefore, our results suggested the novel relevance of BIRC3, the binding partner of Snail, in ovarian cancer development.

Chlorogenic acid alleviates the reduction of Akt and Bad phosphorylation and of phospho-Bad and 14-3-3 binding in an animal model of stroke

  • Murad-Ali, Shah;Ju-Bin, Kang;Myeong-Ok, Kim;Phil-Ok, Koh
    • Journal of Veterinary Science
    • /
    • v.23 no.6
    • /
    • pp.84.1-84.15
    • /
    • 2022
  • Background: Stroke is caused by disruption of blood supply and results in permanent disabilities as well as death. Chlorogenic acid is a phenolic compound found in various fruits and coffee and exerts antioxidant, anti-inflammatory, and anti-apoptotic effects. Objectives: The purpose of this study was to investigate whether chlorogenic acid regulates the PI3K-Akt-Bad signaling pathway in middle cerebral artery occlusion (MCAO)-induced damage. Methods: Chlorogenic acid (30 mg/kg) or vehicle was administered peritoneally to adult male rats 2 h after MCAO surgery, and animals were sacrificed 24 h after MCAO surgery. Neurobehavioral tests were performed, and brain tissues were isolated. The cerebral cortex was collected for Western blot and immunoprecipitation analyses. Results: MCAO damage caused severe neurobehavioral disorders and chlorogenic acid improved the neurological disorders. Chlorogenic acid alleviated the MCAO-induced histopathological changes and decreased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells. Furthermore, MCAO-induced damage reduced the expression of phospho-PDK1, phospho-Akt, and phospho-Bad, which was alleviated with administration of chlorogenic acid. The interaction between phospho-Bad and 14-3-3 levels was reduced in MCAO animals, which was attenuated by chlorogenic acid treatment. In addition, chlorogenic acid alleviated the increase of cytochrome c and caspase-3 expression caused by MCAO damage. Conclusions: The results of the present study showed that chlorogenic acid activates phospho-Akt and phospho-Bad and promotes the interaction between phospho-Bad and 14-3-3 during MCAO damage. In conclusion, chlorogenic acid exerts neuroprotective effects by activating the Akt-Bad signaling pathway and maintaining the interaction between phospho-Bad and 14-3-3 in ischemic stroke model.

A Neuroprotective Action of Quercetin and Apigenin through Inhibiting Aggregation of Aβ and Activation of TRKB Signaling in a Cellular Experiment

  • Ya-Jen Chiu;Yu-Shan Teng;Chiung-Mei Chen;Ying-Chieh Sun;Hsiu Mei Hsieh-Li;Kuo-Hsuan Chang;Guey-Jen Lee-Chen
    • Biomolecules & Therapeutics
    • /
    • v.31 no.3
    • /
    • pp.285-297
    • /
    • 2023
  • Alzheimer's disease (AD) is a neurodegenerative disease with progressive memory loss and the cognitive decline. AD is mainly caused by abnormal accumulation of misfolded amyloid β (Aβ), which leads to neurodegeneration via a number of possible mechanisms such as down-regulation of brain-derived neurotrophic factor-tropomyosin-related kinase B (BDNF-TRKB) signaling pathway. 7,8-Dihydroxyflavone (7,8-DHF), a TRKB agonist, has demonstrated potential to enhance BDNF-TRKB pathway in various neurodegenerative diseases. To expand the capacity of flavones as TRKB agonists, two natural flavones quercetin and apigenin, were evaluated. With tryptophan fluorescence quenching assay, we illustrated the direct interaction between quercetin/apigenin and TRKB extracellular domain. Employing Aβ folding reporter SH-SY5Y cells, we showed that quercetin and apigenin reduced Aβ-aggregation, oxidative stress, caspase-1 and acetylcholinesterase activities, as well as improved the neurite outgrowth. Treatments with quercetin and apigenin increased TRKB Tyr516 and Tyr817 and downstream cAMP-response-element binding protein (CREB) Ser133 to activate transcription of BDNF and BCL2 apoptosis regulator (BCL2), as well as reduced the expression of pro-apoptotic BCL2 associated X protein (BAX). Knockdown of TRKB counteracted the improvement of neurite outgrowth by quercetin and apigenin. Our results demonstrate that quercetin and apigenin are to work likely as a direct agonist on TRKB for their neuroprotective action, strengthening the therapeutic potential of quercetin and apigenin in treating AD.

CD38 Inhibition Protects Fructose-Induced Toxicity in Primary Hepatocytes

  • Soo-Jin Lee;Sung-E Choi;Seokho Park;Yoonjung Hwang;Youngho Son;Yup Kang
    • Molecules and Cells
    • /
    • v.46 no.8
    • /
    • pp.496-512
    • /
    • 2023
  • A fructose-enriched diet is thought to contribute to hepatic injury in developing non-alcoholic steatohepatitis (NASH). However, the cellular mechanism of fructose-induced hepatic damage remains poorly understood. This study aimed to determine whether fructose induces cell death in primary hepatocytes, and if so, to establish the underlying cellular mechanisms. Our results revealed that treatment with high fructose concentrations for 48 h induced mitochondria-mediated apoptotic death in mouse primary hepatocytes (MPHs). Endoplasmic reticulum stress responses were involved in fructose-induced death as the levels of phosho-eIF2α, phospho-C-Jun-N-terminal kinase (JNK), and C/EBP homologous protein (CHOP) increased, and a chemical chaperone tauroursodeoxycholic acid (TUDCA) prevented cell death. The impaired oxidation metabolism of fatty acids was also possibly involved in the fructose-induced toxicity as treatment with an AMP-activated kinase (AMPK) activator and a PPAR-α agonist significantly protected against fructose-induced death, while carnitine palmitoyl transferase I inhibitor exacerbated the toxicity. However, uric acid-mediated toxicity was not involved in fructose-induced death as uric acid was not toxic to MPHs, and the inhibition of xanthine oxidase (a key enzyme in uric acid synthesis) did not affect cell death. On the other hand, treatment with inhibitors of the nicotinamide adenine dinucleotide (NAD)+-consuming enzyme CD38 or CD38 gene knockdown significantly protected against fructose-induced toxicity in MPHs, and fructose treatment increased CD38 levels. These data suggest that CD38 upregulation plays a role in hepatic injury in the fructose-enriched diet-mediated NASH. Thus, CD38 inhibition may be a promising therapeutic strategy to prevent fructose-enriched diet-mediated NASH.

Rehmannioside D mitigates disease progression in rats with experimental-induced diminished ovarian reserve via Forkhead Box O1/KLOTHO axis

  • Yan Liang;Huimin Wang;Jin Chen;Lingyan Chen;Xiaoyong Chen
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.2
    • /
    • pp.167-176
    • /
    • 2023
  • This study aims to explore the impact of Rehmannioside D (RD) on ovarian functions of rats with diminished ovarian reserve (DOR) and its underlying mechanisms of action. A single injection of cyclophosphamide was performed to establish a DOR rat model, and fourteen days after the injection, the rats were intragastrically administrated with RD for two weeks. Rat estrus cycles were tested using vaginal smears. Ovarian tissues were histologically evaluated, the number of primordial, mature, and atretic follicles was calculated, and the apoptotic rate of granulosa cells. Follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E2) levels were determined by ELISA assays. Protein levels of Forkhead Box O1 (FOXO1), KLOTHO, Bcl-2, and Bax were investigated in ovarian tissues of DOR rats. The binding between FOXO1 and KLOTHO was verified by ChIP assay. High-dose administration of RD into DOR rats improved their estrus cycles, increased ovarian index, enhanced the number of primordial and mature follicles, reduced the number of atretic follicle number, and ovarian granulosa cell apoptosis in addition to inhibiting FSH and LH levels and upregulating E2 expression. FOXO1 and KLOTHO were significantly suppressed in DOR rats. FOXO1 knockdown partially suppressed the protective effects of RD on DOR rats, and KLOTHO overexpression could restore RD-induced blockade of DOR development despite knocking down FOXO1. FOXO1 antibody enriched KLOTHO promoter, and the binding between them was reduced in DOR group compared to that in sham group. RD improved ovarian functions in DOR rats and diminished granulosa cell apoptosis via the FOXO1/KLOTHO axis.

Pro-apoptotic and Anti-adipogenic Effects of Proso Millet (Panicum miliaceum) Grains on 3T3-L1 Preadipocytes (기장(Panicum miliaceum)의 마우스 3T3-L1 세포에 대한 에폽토시스 유발 및 지방세포형성 억제 효능)

  • Jun, Do Youn;Lee, Ji Young;Han, Cho Rong;Kim, Kwan-Pil;Seo, Myung Chul;Nam, Min Hee;Kim, Young Ho
    • Journal of Life Science
    • /
    • v.24 no.5
    • /
    • pp.505-514
    • /
    • 2014
  • To examine the anti-obese activity of miscellaneous cereal grains, 80% ethanol extracts from eight selected miscellaneous cereal grains were compared for their cytotoxic effects on 3T3-L1 murine preadipocytes. The ethanol extract of proso millet exhibited the highest cytotoxicity. Further fractionation of the ethanol extract with methylene chloride, ethyl acetate, and n-butanol showed that the cytotoxicity of the ethanol extract was mainly partitioned into the butanol fraction. As compared with differentiated mature adipocytes, 3T3-L1 preadipocytes were more susceptible to the cyctotoxicity of the butanol fraction. When each organic solvent fraction (25 ${\mu}g/ml$) was added during the differentiation period for 6 days, the cell viability was not affected significantly except for the butanol fraction, but the intracellular lipid accumulation declined to a level of 81.5%~50.3% of the control. The Oil Red O staining data also demonstrated that the ethanol extract as well as the butanol fraction could inhibit the differentiation of 3T3-L1 preadipocytes into mature adipocytes. The presence of the butanol extract during the induced adipocytic differentiation also resulted in a significant reduction in the expression levels of critical adipogenesis mediators $(C/EBP{\alpha}$, $PPAR{\gamma}$, aP2, and LPL) to a barely detectable or undetectable level and the cells retained the fibroblast-like morphology of 3T3-L1. In 3T3-L1 cells, the cytotoxicity of the butanol fraction (50-100 ${\mu}g/ml$) was accompanied by mitochondrial membrane potential (${\Delta}{\psi}m$) loss, caspase-3 activation, and PARP degradation. Taken together, these results indicate that proso millet grains possess pro-apoptotic and anti-adipocytic activities toward adipocytes, which can be applicable to prevention of obesity.

Injury of Neurons by Oxygen-Glucose Deprivation in Organotypic Hippocampal Slice Culture (뇌 해마조직 절편 배양에서 산소와 당 박탈에 의한 뇌신경세포 손상)

  • Chung, David Chanwook;Hong, Kyung Sik;Kang, Jihui;Chang, Young Pyo
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.10
    • /
    • pp.1112-1117
    • /
    • 2008
  • Purpose : We intended to observe cell death and apoptotic changes in neurons in organotypic hippocampal slice cultures following oxygen-glucose deprivation (OGD), using propidium iodide (PI) uptake, Fluoro-Jade (FJ) staining, TUNEL staining and immunofluorescent staining for caspase-3. Methods : The hippocampus of 7-day-old rats was cut into $350{\mu}m$ slices. The slices were cultured for 10 d (date in vitro, DIV 10) and and exposed to OGD for 60 min at DIV 10. They were then incubated for reperfusion under normoxic conditions for an additional 48 h. Fluorescence of PI uptake was observed at predetermined intervals, and the cell death percentage was recorded. At 24 h following OGD, the slices were Cryo-cut into $15{\mu}m$ thicknesses, and Fluoro-Jade staining, TUNEL staining, and immunofluorescence staining for caspase-3 were performed. Results : 1) PI uptake was restricted to the pyramidal cell layer and DG in the slices after OGD. The fluorescent intensities of PI increased from 6 to 48 h during the reperfusion stage. The cell death percentage significantly increased time-dependently in CA1 and DG following OGD (P<0.05). 2) At 24 h after OGD, many FJ positive cells were detected in CA1 and DG. Some neurons had distinct nuclei and processes while others had fragmented nuclei and disrupted processes in CA1. TUNEL and immunofluorescent staining for caspase-3 showed increased expression of TUNEL labeling and caspase-3 in CA1 and DG at 24 h after OGD. Conclusion : The numerous dead cells in the slice cultures after OGD tended to display apoptotic changes mediated by the activation of caspase-3.

Anti-oxidative and Cytoprotective Effect of Ursodeoxycholic Acid, an Active Compound from the Bear's Gall, in Mouse Microglia (생쥐 뇌소교세포주에서 웅담추출활성성분(우르소데옥시콜린산)의 항산화 및 세포보호효과)

  • Joo, Seong-Soo;Kim, Seong-Kun;Yoo, Yeong-Min;Ryu, In-Wang;Kim, Kyung-Hoon;Lee, Do-Ik
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.452-455
    • /
    • 2006
  • The in vitro cytoprotective and anti-oxidative effects of ursodeoxycholic acid, a major active compound from bear's gall were investigated in mouse brain microglia. In the present study, we wished to scrutinize the potential role of UDCA as an anti-neurodegenerative agent in neurodegenerative disease such as Alzheimer's disease. This concept was supported by the multiple preliminary studies in which UDCA has an anti-inflammatory effect in microglial cells. In the study, we found that $7.5\;{\mu}g/mL$ UDCA was effective in the protection of cells from $H_2O_2$ damage, a reactive oxygen, and the resuIt was coincided with the anti-apoptotic effect in DAPI staining. Moreover, the metal-catalyzed oxidation study showed that UDCA has antioxidant effect as much as ascorbic acid at $50{\sim}100\;{\mu}g/mL$. In conclusion, these study results suggested that neuro-degenerative diseases such as Alzheimer's disease probably caused by over-expressed beta amyloid peptide in elderly people can be controled by UDCA through an anti-inflammatory, anti-oxidative and anti-apoptotic effect. The evidences showed in the study may be references for more in-depth in vivo and clinical studies for a candidate of anti-neurodegenerative therapy in the near future.

Euphorbiae Immifusae Sensitizes Apoptosis of TRAIL-resistant Human Gastric Adenocarcinoma AGS Cells (지금초 추출물에 의한 TRAIL 저항성 인체위암세포의 세포사멸 유도)

  • Lee, Jae-Jun; Shin, Dong-Hyuk;Park, Sang-Eun;Kim, Won-Il;Park, Dong-Il;Choi, Yung-Hyun;Hong, Sang-Hoon
    • Journal of Life Science
    • /
    • v.18 no.1
    • /
    • pp.120-128
    • /
    • 2008
  • The death ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/ Apo1L is a cytokine that activates apoptosis through cell surface death receptors. TRAIL has sparked growing interest in oncology due to its reported ability to selectively trigger cancer cell death. Euphorbiae humifusae Wind has been used in traditional Oriental medicine as a folk remedy used for the treatment of cancer. However, the mechanism responsible for the anticancer effects of E. humifusae not clearly understood. Here, we show that treatment with subtoxic doses of water extract of E. humifusae (WEEH) in combination with TRAIL induces apoptosis in TRAIL-resistant human gastric carcinoma AGS cells. Combined treatment with WEEH and TRAIL induced chromatin condensation and sub-G1 phase DNA content. These indicators of apoptosis were correlated with the induction of caspase activity that resulted in the cleavage of poly (ADP-ribose) polymerase. Combined treatment also triggered the loss of mitochondrial membrane potential. Furthermore, co-treatment with WEEH and TRAIL down-regulated the protein levels of the anti-apoptotic proteins such as Bcl-2, Bcl-xL, XIAP and cIAP-1. Although more study will be needed to examine the detailed mechanisms, this combined treatment may offer an attractive strategy for safely treating gastric adenocarcinomas and the results provide important new insights into the possible molecular mechanisms of the anticancer activity of E. humifusae.