• Title/Summary/Keyword: antiviral activities

Search Result 182, Processing Time 0.034 seconds

Comparative Study on the Production of Interferons from Porcine Blood Leukocytes (돼지의 백혈구 인터폐론 생산에 관한 비교연구)

  • Han, Su-nam;Lee, Jang-nag;Lee, Chang-eop
    • Korean Journal of Veterinary Research
    • /
    • v.27 no.2
    • /
    • pp.191-200
    • /
    • 1987
  • Attempts were to produce porcine leukocyte interferon(PorLeIF) and porcine immune interferon (PorIIF) in the culture of porcine leukocytes. The interferons produced were tested for antiviral activity against vesicular stomatitis virus on poreine-derived PK(15) cells, human-derived FL cells, and Korean native black goat-derived BGK cells. The results were summarized as follws: 1. In the isolation of porcine leukocytes, the mean isolation rate by the buffy coat separation method (28.7%) was higher than that by the hydroxyethyl starch-RBC sedimentation method (9.2%). 2. When NDV(BI)-induced PorLeIFs were assyed on PK(15) cells and FL cells, the mean titers were 129 IU/ml and 72 IU/ml respectively, being 55.8% of the activity in homologous species system expressed in heterologous system. 3. The activities of PHA P-induced PorIIFs were 197 IU/ml on PK (15) cells and no activity on human FL cells. The mean antiviral activity of PorIIF was 1.5 times that of PorLeIF in PK (15) cells. 4. The cytopathic effect of vesicular stomatitis virus was observed in BGK cells derived from Korean native black goat kidney permitting interferon assay on the cells. While the cross-species antiviral activity of reference human ${\alpha},\;{\beta}-interferon$ was observed on the cells, PorLeIF and PorIIF did not show any activity.

  • PDF

Possible Mechanism Underlying the Antiherpetic Activity of a Proteoglycan Isolated from the Mycelia of Ganoderma lucidum in Vitro

  • Li, Zubing;Liu, Jing;Zhao, Yifang
    • BMB Reports
    • /
    • v.38 no.1
    • /
    • pp.34-40
    • /
    • 2005
  • GLPG (Ganoderma lucidum proteoglycan) was a bioactive fraction obtained by the liquid fermentation of the mycelia of Ganoderma lucidum, EtOH precipitation, and DEAE-cellulose column chromatography. GLPG was a proteoglycan with a carbohydrate: protein ratio of 10.4: 1. Its antiviral activities against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) were investigated using a cytopathic inhibition assay. GLPG inhibited cell death in a dose-dependent manner in HSV-infected cells. In addition, it had no cytotoxic effect even at 2 mg/ml. In order to study the mode of action of the antiviral activity of GLPG, cells were treated with GLPG before, during, and after infection, and viral titer in the supernatant of cell culture 48 h post-infection was determined using a $TCID_{50}$ assay. The antiviral effects of GLPG were more remarkable before viral treatment than after treatment. Although the precise mechanism has yet to be defined, our work suggests that GLPG inhibits viral replication by interfering with the early events of viral adsorption and entry into target cells. Thus, this proteoglycan appears to be a candidate anti-HSV agent.

Antiviral activities of ginseng and its potential and putative benefits against monkeypox virus: A mini review

  • Rajib Chandra Das;Zubair Ahmed Ratan;Md Mustafizur Rahman;Nusrat Jahan Runa;Susmita Mondal;Konstantin Konstantinov;Hassan Hosseinzadeh;Jae Youl Cho
    • Journal of Ginseng Research
    • /
    • v.47 no.6
    • /
    • pp.687-693
    • /
    • 2023
  • Due to the Covid-19 pandemic more than 6 million people have died, and it has bought unprecedented challenges to our lives. The recent outbreak of monkeypox virus (MPXV) has brought out new tensions among the scientific community. Currently, there is no specific treatment protocol for MPXV. Several antivirals, vaccinia immune globulin (VIG) and smallpox vaccines have been used to treat MPXV. Ginseng, one of the more famous among traditional medicines, has been used for infectious disease for thousands of years. It has shown promising antiviral effects. Ginseng could be used as a potential adaptogenic agent to help prevent infection by MPXV along with other drugs and vaccines. In this mini review, we explore the possible use of ginseng in MPXV prevention based on its antiviral activity.

Synthesis and Biological Effects of Some 5-Heterocyclicmethyl-2'-deoxyurdines

  • Kwak, In-Young;Ryu, Eung K.
    • Archives of Pharmacal Research
    • /
    • v.13 no.4
    • /
    • pp.306-309
    • /
    • 1990
  • The synthesis of 5-hyterocyclimethyl-2'-deoxyuridines (4a-f) has been accomplished by displacement reaction of 5-(bromomethyl)-3', 5'-di-O-acetyl-2'-deoxyuridine with heterocyclic compounds, followed by removal of acetyl protecting group with methanolic ammonia. The compoudns synthesized were evaluated the inhibitory effects on L1210 cell probiferation and antiviral activities against Herpes simplex virus type 1 (HSV-1) None of the compounds exhibited sufficient biological activities.

  • PDF

Inhibitory Effect on Replication of Enterovirus 71 of Herb Methanol Extract

  • Choi, Hwa-Jung;Song, Jae-Hyoung;Ahn, Young-Joon;Kwon, Dur-Han
    • Journal of Applied Biological Chemistry
    • /
    • v.51 no.3
    • /
    • pp.123-127
    • /
    • 2008
  • Anti-enterovirus 71 (EV 71) activities of fifteen herb plant species extracts were examined by SRB assay, among which Origanum vulgare and Rosmarinus officinalis (Anna Rosemary) extracts exhibited the activities with $IC_{50}$ of 8.28 and $8.17\;{\mu}g/mL$, respectively. Their 50% cytotoxicity concentrations ($CC_{50}$) were 691.89 and $1104.19\;{\mu}g/mL$, and the therapeutic indices were 83.56 and 135.15, respectively. Amantadine (positive control) showed anti-EV 71 activity with 50% inhibitory concentration and $CC_{50}$ of 4.46 and $145.22\;{\mu}g/mL$, respectively. Addition of the methanol extracts of O. vulgare and R. officinalis (Anna Rosemary) in EV 71-infected Vero cells strongly inhibited the formation of visible cytopathic effects without changing the normal morphology of the cells. These results indicate that methanol extracts of O. vulgare and R. officinalis (Anna Rosemary) may contain antiviral compound inhibiting the EV 71 replication.

US28, a Virally-Encoded GPCR as an Antiviral Target for Human Cytomegalovirus Infection

  • Lee, Sungjin;Chung, Yoon Hee;Lee, Choongho
    • Biomolecules & Therapeutics
    • /
    • v.25 no.1
    • /
    • pp.69-79
    • /
    • 2017
  • Viruses continue to evolve a new strategy to take advantage of every aspect of host cells in order to maximize their survival. Due to their central roles in transducing a variety of transmembrane signals, GPCRs seem to be a prime target for viruses to pirate for their own use. Incorporation of GPCR functionality into the genome of herpesviruses has been demonstrated to be essential for pathogenesis of many herpesviruses-induced diseases. Here, we introduce US28 of human cytomegalovirus (HCMV) as the best-studied example of virally-encoded GPCRs to manipulate host GPCR signaling. In this review, we wish to summarize a number of US28-related topics including its regulation of host signaling pathways, its constitutive internalization, its structural and functional analysis, its roles in HCMV biology and pathogenesis, its proliferative activities and role in oncogenesis, and pharmacological modulation of its biological activities. This review will aid in our understanding of how pathogenic viruses usurp the host GPCR signaling for successful viral infection. This kind of knowledge will enable us to build a better strategy to control viral infection by normalizing the virally-dysregulated host GPCR signaling.

RNases and their role in Cancer

  • Beeram, Eswari
    • The Korean Journal of Food & Health Convergence
    • /
    • v.5 no.2
    • /
    • pp.27-34
    • /
    • 2019
  • RNases plays a pivotal role in biological system and different RNases are known for their various functions like angiogenesis, immunological response, antiviral, antitumour activity and apoptosis. In which anti tumour activity of RNase is proved to improve genome stability in normal cells up to some extent. RNases like RNase L shows antiviral and antitumour activities against virus infected cells and cancer cells through 2'-5' oligo adenylate pathway and induces RNaseL dependent apoptosis where as RNase A modulates various proliferative pathways like MAP kinase, JNK, TGF-${\beta}$ and activates apoptosis in cancer cells and promotes immunological response through processing of Ags. IRE1 RNase acts as both tumour suppressor gene and oncogene in normal and cancer cells and involved in both antitumour and tumorigenic activities. RNase III upregulates miRNA in cancer cells there by acting via posttranscriptional level and proven to be effective against colorectal adeno carcinoma. In addition to this IRE1 RNase is a double edged sword through RIDD pathway in ER (18). To some of the cancers expressing c-myc IRE1 acts as tumour suppressor where as in cancers where myc is downregulated IRE1 acts as tumour provoking through RIDD pathway (18). Thus RNases play vital role in regulating the genome stability.

Baicalein and Baicalin as Inhibitors of HIV-1 Integrase (면역결핍바이러스 인테그라제 억제제로서 Baicalein과 Baicalin)

  • 이민전;김미라;이용섭;신차균
    • YAKHAK HOEJI
    • /
    • v.47 no.1
    • /
    • pp.46-51
    • /
    • 2003
  • Baicalein and baicalin are flavonoid compounds isolated from medicinal herb Scutellaria baicalensis Georgi (Labiatae) and have been known to possess antiviral activities. In the present study, we investigated the in vitro effects of baicalein and baicalin on the three distinctive enzymatic activities of the human immunodeficiency virus type-1 (HIV-1) integrase-endonucleolytic, integration, and disintegration activities. Both compounds inhibited the three enzymatic activities in a dose-dependent manner. The 50% inhibitory concentrations of baicalein and baicalin for endonucleolytic activities of HIV-1 integrase were 4.4$\pm$3.3 and 25.9$\pm$4.0$\mu$M, respectively. In general, baicalein exhibited nearly 6- to 10-fold stronger inhibition than baicalin for the three enzymatic activities. These data demonstrate that baicalein or baicalin can be used as a leading compound to develop anti-AIDS chemotherapeutic agents targeting to the HIV-1 integrase.

Towards the Application of Human Defensins as Antivirals

  • Park, Mee Sook;Kim, Jin Il;Lee, Ilseob;Park, Sehee;Bae, Joon-Yong;Park, Man-Seong
    • Biomolecules & Therapeutics
    • /
    • v.26 no.3
    • /
    • pp.242-254
    • /
    • 2018
  • Defensins are antimicrobial peptides that participate in the innate immunity of hosts. Humans constitutively and/or inducibly express ${\alpha}$- and ${\beta}$-defensins, which are known for their antiviral and antibacterial activities. This review describes the application of human defensins. We discuss the extant experimental results, limited though they are, to consider the potential applicability of human defensins as antiviral agents. Given their antiviral effects, we propose that basic research be conducted on human defensins that focuses on RNA viruses, such as human immunodeficiency virus (HIV), influenza A virus (IAV), respiratory syncytial virus (RSV), and dengue virus (DENV), which are considered serious human pathogens but have posed huge challenges for vaccine development for different reasons. Concerning the prophylactic and therapeutic applications of defensins, we then discuss the applicability of human defensins as antivirals that has been demonstrated in reports using animal models. Finally, we discuss the potential adjuvant-like activity of human defensins and propose an exploration of the 'defensin vaccine' concept to prime the body with a controlled supply of human defensins. In sum, we suggest a conceptual framework to achieve the practical application of human defensins to combat viral infections.

Fructus Amomi Cardamomi Extract Inhibits Coxsackievirus-B3 Induced Myocarditis in a Murine Myocarditis Model

  • Lee, Yun-Gyeong;Park, Jung-Ho;Jeon, Eun-Seok;Kim, Jin-Hee;Lim, Byung-Kwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.11
    • /
    • pp.2012-2018
    • /
    • 2016
  • Coxsackievirus B3 (CVB3) is the main cause of acute myocarditis and dilated cardiomyopathy. Plant extracts are considered as useful materials to develop new antiviral drugs. We had previously selected candidate plant extracts, which showed anti-inflammatory effects. We examined the antiviral effects by using a HeLa cell survival assay. Among these extracts, we chose the Amomi Cardamomi (Amomi) extract, which showed strong antiviral effect and preserved cell survival in CVB3 infection. We investigated the mechanisms underlying the ability of Amomi extract to inhibit CVB3 infection and replication. HeLa cells were infected by CVB3 with or without Amomi extract. Erk and Akt activities, and their correlation with virus replication were observed. Live virus titers in cell supernatants and viral positive- and negative-strand RNA amplification were measured. Amomi extract significantly increased HeLa cell survival in different concentrations ($100-10{\mu}g/ml$). CVB3 capsid protein VP1 expression (76%) and viral protease 2A-induced eIF4G1 cleavage (70%) were significantly decreased in Amomi extract ($100{\mu}g/ml$) treated cells. The levels of positive- (20%) and negative-strand (80%) RNA were dramatically decreased compared with the control, as revealed by reverse transcription-PCR. In addition, Amomi extract improved mice survival (51% vs 26%) and dramatically reduced heart inflammation in a CVB3-induced myocarditis mouse model. These results suggested that Amomi extract significantly inhibited Enterovirus replication and myocarditis damage. Amomi may be developed as a therapeutic drug for Enterovirus.