Browse > Article
http://dx.doi.org/10.4062/biomolther.2017.172

Towards the Application of Human Defensins as Antivirals  

Park, Mee Sook (Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University)
Kim, Jin Il (Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University)
Lee, Ilseob (Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University)
Park, Sehee (Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University)
Bae, Joon-Yong (Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University)
Park, Man-Seong (Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University)
Publication Information
Biomolecules & Therapeutics / v.26, no.3, 2018 , pp. 242-254 More about this Journal
Abstract
Defensins are antimicrobial peptides that participate in the innate immunity of hosts. Humans constitutively and/or inducibly express ${\alpha}$- and ${\beta}$-defensins, which are known for their antiviral and antibacterial activities. This review describes the application of human defensins. We discuss the extant experimental results, limited though they are, to consider the potential applicability of human defensins as antiviral agents. Given their antiviral effects, we propose that basic research be conducted on human defensins that focuses on RNA viruses, such as human immunodeficiency virus (HIV), influenza A virus (IAV), respiratory syncytial virus (RSV), and dengue virus (DENV), which are considered serious human pathogens but have posed huge challenges for vaccine development for different reasons. Concerning the prophylactic and therapeutic applications of defensins, we then discuss the applicability of human defensins as antivirals that has been demonstrated in reports using animal models. Finally, we discuss the potential adjuvant-like activity of human defensins and propose an exploration of the 'defensin vaccine' concept to prime the body with a controlled supply of human defensins. In sum, we suggest a conceptual framework to achieve the practical application of human defensins to combat viral infections.
Keywords
Adjuvant; Antiviral; Defensin; Prophylactic; Therapeutic; Virus;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Vernieri, E., Valle, J., Andreu, D. and de la Torre, B. G. (2014) An optimized Fmoc synthesis of human defensin 5. Amino Acids 46, 395- 400.   DOI
2 Kluver, E., Schulz-Maronde, S., Scheid, S., Meyer, B., Forssmann, W. G. and Adermann, K. (2005) Structure-activity relation of human beta-defensin 3: influence of disulfide bonds and cysteine substitution on antimicrobial activity and cytotoxicity. Biochemistry 44, 9804-9816.   DOI
3 Kota, S., Sabbah, A., Chang, T. H., Harnack, R., Xiang, Y., Meng, X. and Bose, S. (2008) Role of human beta-defensin-2 during tumor necrosis factor-alpha/NF-kappaB-mediated innate antiviral response against human respiratory syncytial virus. J. Biol. Chem. 283, 22417-22429.   DOI
4 Krammer, F. and Palese, P. (2013) Influenza virus hemagglutinin stalkbased antibodies and vaccines. Curr. Opin. Virol. 3, 521-530.   DOI
5 Krammer, F., Palese, P. and Steel, J. (2015) Advances in universal influenza virus vaccine design and antibody mediated therapies based on conserved regions of the hemagglutinin. Curr. Top. Microbiol. Immunol. 386, 301-321.
6 Kurane, I. and Ennis, F. A. (1988) Production of interferon alpha by dengue virus-infected human monocytes. J. Gen. Virol. 69, 445- 449.   DOI
7 Kurosawa, S., Ohta, M., Hayakawa, M., Kamino, Y., Abiko, Y. and Sasahara, H. (2002) Characterization of rat monoclonal antibodies against human beta-defensin-2. Hybrid. Hybridomics 21, 359-363.   DOI
8 Lehrer, R. I. (2004) Primate defensins. Nat. Rev. Microbiol. 2, 727-738.   DOI
9 Lehrer, R. I., Barton, A., Daher, K. A., Harwig, S. S., Ganz, T. and Selsted, M. E. (1989) Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J. Clin. Invest. 84, 553-561.   DOI
10 Lehrer, R. I., Jung, G., Ruchala, P., Andre, S., Gabius, H. J. and Lu, W. (2009) Multivalent binding of carbohydrates by the human alphadefensin, HD5. J. Immunol. 183, 480-490.   DOI
11 Lehrer, R. I. and Lu, W. (2012) ${\alpha}$-Defensins in human innate immunity. Immunol. Rev. 245, 84-112.   DOI
12 Wu, Z., Hoover, D. M., Yang, D., Boulegue, C., Santamaria, F., Oppenheim, J. J., Lubkowski, J. and Lu, W. (2003a) Engineering disulfide bridges to dissect antimicrobial and chemotactic activities of human beta-defensin 3. Proc. Natl. Acad. Sci. U.S.A. 100, 8880-8885.   DOI
13 Wu, Z., Li, X., Ericksen, B., de Leeuw, E., Zou, G., Zeng, P., Xie, C., Li, C., Lubkowski, J., Lu, W. Y. and Lu W. (2007) Impact of pro segments on the folding and function of human neutrophil alphadefensins. J. Mol. Biol. 368, 537-549.   DOI
14 Wu, Z., Prahl, A., Powell, R., Ericksen, B., Lubkowski, J. and Lu, W. (2003b) From pro defensins to defensins: synthesis and characterization of human neutrophil pro alpha-defensin-1 and its mature domain. J. Pept. Res. 62, 53-62.   DOI
15 Wykes, M., Pombo, A., Jenkins, C. and MacPherson, G. G. (1998) Dendritic cells interact directly with naive B lymphocytes to transfer antigen and initiate class switching in a primary T-dependent response. J. Immunol. 161, 1313-1319.
16 Xu, Z., Peng, L., Zhong, Z., Fang, X. and Cen, P. (2006a) High-level expression of a soluble functional antimicrobial peptide, human beta-defensin 2, in Escherichia coli. Biotechnol. Prog. 22, 382-386.   DOI
17 Xu, Z., Zhong, Z., Huang, L., Peng, L., Wang, F. and Cen, P. (2006b) High-level production of bioactive human beta-defensin-4 in Escherichia coli by soluble fusion expression. Appl. Microbiol. Biotechnol. 72, 471-479.   DOI
18 Yang, D., Biragyn, A., Kwak, L. W. and Oppenheim, J. J. (2002) Mammalian defensins in immunity: more than just microbicidal. Trends Immunol. 23, 291-296.   DOI
19 Yang, D., Chertov, O., Bykovskaia, S. N., Chen, Q., Buffo, M. J., Shogan, J., Anderson, M., Schroder, J. M., Wang, J. M., Howard, O. M. and Oppenheim, J. J. (1999) Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286, 525-528.   DOI
20 Mangoni, M. L., McDermott, A. M. and Zasloff, M. (2016) Antimicrobial peptides and wound healing: biological and therapeutic considerations. Exp. Dermatol. 25, 167-173.   DOI
21 Megjugorac, N. J., Young, H. A., Amrute, S. B., Olshalsky, S. L. and Fitzgerald-Bocarsly, P. (2004) Virally stimulated plasmacytoid dendritic cells produce chemokines and induce migration of T and NK cells. J. Leukoc. Biol. 75, 504-514.   DOI
22 Menendez, A. and Brett Finlay, B. (2007) Defensins in the immunology of bacterial infections. Curr. Opin. Immunol. 19, 385-391.   DOI
23 Mohan, T., Mitra, D. and Rao, D. N. (2014) Nasal delivery of PLG microparticle encapsulated defensin peptides adjuvanted gp41 antigen confers strong and long-lasting immunoprotective response against HIV-1. Immunol. Res. 58, 139-153.   DOI
24 Moon, S. K. and Lim, D. J. (2015) Intratympanic gene delivery of antimicrobial molecules in otitis media. Curr. Allergy Asthma Rep. 15, 14.   DOI
25 Morgan, A. J. and Parker, S. (2007) Translational mini-review series on vaccines: the Edward Jenner Museum and the history of vaccination. Clin. Exp. Immunol. 147, 389-394.   DOI
26 Biragyn, A., Ruffini, P. A., Leifer, C. A., Klyushnenkova, E., Shakhov, A., Chertov, O., Shirakawa, A. K., Farber, J. M., Segal, D. M., Oppenheim, J. J. and Kwak, L. W. (2002) Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science 298, 1025-1029.   DOI
27 Jarczak, J., Kosciuczuk, E. M., Lisowski, P., Strzalkowska, N., Jozwik, A., Horbanczuk, J., Krzyzewski, J., Zwierzchowski, L. and Bagnicka, E. (2013) Defensins: natural component of human innate immunity. Hum. Immunol. 74, 1069-1079.   DOI
28 Jiang, D., Weidner, J. M., Qing, M., Pan, X. B., Guo, H., Xu, C., Zhang, X., Birk, A., Chang, J., Shi, P. Y., Block, T. M. and Guo, J. T. (2010) Identification of five interferon-induced cellular proteins that inhibit west nile virus and dengue virus infections. J. Virol. 84, 8332-8341.   DOI
29 Jiang, Y., Yang, D., Li, W., Wang, B., Jiang, Z. and Li, M. (2012) Antiviral activity of recombinant mouse ${\beta}$-defensin 3 against influenza A virus in vitro and in vivo. Antivir. Chem. Chemother. 22, 255-262.   DOI
30 Ju, S. M., Goh, A. R., Kwon, D. J., Youn, G. S., Kwon, H. J., Bae, Y. S., Choi, S. Y. and Park, J. (2012) Extracellular HIV-1 Tat induces human beta-defensin-2 production via NF-kappaB/AP-1 dependent pathways in human B cells. Mol. Cells 33, 335-341.   DOI
31 Mousa, J. J., Kose, N., Matta, P., Gilchuk, P. and Crowe, J. E., Jr. (2017) A novel pre-fusion conformation-specific neutralizing epitope on the respiratory syncytial virus fusion protein. Nat. Microbiol. 2, 16271.   DOI
32 Neumann, G. and Kawaoka, Y. (2011) The first influenza pandemic of the new millennium. Influenza Other Respir. Viruses 5, 157-166.   DOI
33 Nguyen, E. K., Nemerow, G. R. and Smith, J. G. (2010) Direct evidence from single-cell analysis that human ${\alpha}$-defensins block adenovirus uncoating to neutralize infection. J. Virol. 84, 4041-4049.   DOI
34 Bustos-Arriaga, J., Garcia-Machorro, J., Leon-Juarez, M., Garcia- Cordero, J., Santos-Argumedo, L., Flores-Romo, L., Mendez-Cruz, A. R., Juarez-Delgado, F. J. and Cedillo-Barron, L. (2011) Activation of the innate immune response against DENV in normal nontransformed human fibroblasts. PLoS Negl. Trop. Dis. 5, e1420.   DOI
35 Boman, H. G. (2003) Antibacterial peptides: basic facts and emerging concepts. J. Intern. Med. 254, 197-215.   DOI
36 Brandt, C. R., Akkarawongsa, R., Altmann, S., Jose, G., Kolb, A. W., Waring, A. J. and Lehrer, R. I. (2007) Evaluation of a theta-defensin in a Murine model of herpes simplex virus type 1 keratitis. Invest. Ophthalmol. Vis. Sci. 48, 5118-5124.   DOI
37 Brass, A. L., Huang, I. C., Benita, Y., John, S. P., Krishnan, M. N., Feeley, E. M., Ryan, B. J., Weyer, J. L., van der Weyden, L., Fikrig, E., Adams, D. J., Xavier, R. J., Farzan, M. and Elledge, S. J. (2009) The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell 139, 1243-1254.   DOI
38 Carrat, F. and Flahault, A. (2007) Influenza vaccine: the challenge of antigenic drift. Vaccine 25, 6852-6862.   DOI
39 Castaneda-Sanchez, J. I., Dominguez-Martinez, D. A., Olivar-Espinosa, N., Garcia-Perez, B. E., Lorono-Pino, M. A., Luna-Herrera, J. and Salazar, M. I. (2016) Expression of antimicrobial peptides in human monocytic cells and neutrophils in response to dengue virus type 2. Intervirology 59, 8-19.   DOI
40 Chang, T. L., Francois, F., Mosoian, A. and Klotman, M. E. (2003) CAFBiomol mediated human immunodeficiency virus (HIV) type 1 transcriptional inhibition is distinct from alpha-defensin-1 HIV inhibition. J. Virol. 77, 6777-6784.   DOI
41 Pollara, J., Easterhoff, D. and Fouda, G. G. (2017) Lessons learned from human HIV vaccine trials. Curr. Opin. HIV AIDS 12, 216-221.   DOI
42 Dowd, K. A., DeMaso, C. R. and Pierson, T. C. (2015) Genotypic differences in dengue virus neutralization are explained by a single amino acid mutation that modulates virus breathing. MBio 6, e01559-15.
43 Demirkhanyan, L. H., Marin, M., Padilla-Parra, S., Zhan, C., Miyauchi, K., Jean-Baptiste, M., Novitskiy, G., Lu, W. and Melikyan, G. B. (2012) Multifaceted mechanisms of HIV-1 entry inhibition by human ${\alpha}$-defensin. J. Biol. Chem. 287, 28821-28838.   DOI
44 Diamond, M. S. and Harris, E. (2001) Interferon inhibits dengue virus infection by preventing translation of viral RNA through a PKR-independent mechanism. Virology 289, 297-311.   DOI
45 Doss, M., White, M. R., Tecle, T., Gantz, D., Crouch, E. C., Jung, G., Ruchala, P., Waring, A. J., Lehrer, R. I. and Hartshorn, K. L. (2009) Interactions of alpha-, beta-, and theta-defensins with influenza A virus and surfactant protein D. J. Immunol. 182, 7878-7887.   DOI
46 Gounder, A. P., Myers, N. D., Treuting, P. M., Bromme, B. A., Wilson, S. S., Wiens, M. E., Lu, W., Ouellette, A. J., Spindler, K. R., Parks, W. C. and Smith, J. G. (2016) Defensins potentiate a neutralizing antibody response to enteric viral infection. PLoS Pathog. 12, e1005474.   DOI
47 Garcia, J. R., Krause, A., Schulz, S., Rodriguez-Jimenez, F. J., Kluver, E., Adermann, K., Forssmann, U., Frimpong-Boateng, A., Bals, R. and Forssmann, W. G. (2001) Human beta-defensin 4: a novel inducible peptide with a specific salt-sensitive spectrum of antimicrobial activity. FASEB J. 15, 1819-1821.   DOI
48 Gerlier, D. and Lyles, D. S. (2011) Interplay between innate immunity and negative-strand RNA viruses: towards a rational model. Microbiol. Mol. Biol. Rev. 75, 468-490 (second page of table of contents).   DOI
49 Gonzalez, S. F., Lukacs-Kornek, V., Kuligowski, M. P., Pitcher, L. A., Degn, S. E., Kim, Y. A., Cloninger, M. J., Martinez-Pomares, L., Gordon, S., Turley, S. J. and Carroll, M. C. (2010) Capture of influenza by medullary dendritic cells via SIGN-R1 is essential for humoral immunity in draining lymph nodes. Nat. Immunol. 11, 427- 434.
50 Gounder, A. P., Wiens, M. E., Wilson, S. S., Lu, W. and Smith, J. G. (2012) Critical determinants of human ${\alpha}$-defensin 5 activity against non-enveloped viruses. J. Biol. Chem. 287, 24554-24562.   DOI
51 Gropp, R., Frye, M., Wagner, T. O. and Bargon, J. (1999) Epithelial defensins impair adenoviral infection: implication for adenovirusmediated gene therapy. Hum. Gene Ther. 10, 957-964.   DOI
52 Haasbach, E., Droebner, K., Vogel, A. B. and Planz, O. (2011) Lowdose interferon Type I treatment is effective against H5N1 and swine-origin H1N1 influenza A viruses in vitro and in vivo. J. Interferon Cytokine Res. 31, 515-525.   DOI
53 Klotman, M. E. and Chang, T. L. (2006) Defensins in innate antiviral immunity. Nat. Rev. Immunol. 6, 447-456.   DOI
54 Kawai, T. and Akira, S. (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34, 637-650.   DOI
55 Kernbauer, E., Ding, Y. and Cadwell, K. (2014) An enteric virus can replace the beneficial function of commensal bacteria. Nature 516, 94-98.
56 Kim, J. I., Lee, I., Park, S., Hwang, M. W., Bae, J. Y., Lee, S., Heo, J., Park, M. S., Garcia-Sastre, A. and Park, M. S. (2013) Genetic requirement for hemagglutinin glycosylation and its implications for influenza A H1N1 virus evolution. J. Virol. 87, 7539-7549.   DOI
57 Kluver, E., Schulz, A., Forssmann, W. G. and Adermann, K. (2002) Chemical synthesis of beta-defensins and LEAP-1/hepcidin. J. Pept. Res. 59, 241-248.   DOI
58 Wiens, M. E. and Smith, J. G., (2015) Alpha-defensin HD5 inhibits furin cleavage of human papillomavirus 16 L2 to block infection. J. Virol. 89, 2866-2874.   DOI
59 Wiens, M. E. and Smith, J. G., (2017) a-Defensin HD5 Inhibits Human Papillomavirus 16 Infection via Capsid Stabilization and Redirection to the Lysosome. mBio 8, e02304-16.
60 Wiens, M. E., Wilson, S. S., Lucero, C. M. and Smith, J. G. (2014) Defensins and viral infection: dispelling common misconceptions. PLoS Pathog. 10, e1004186.   DOI
61 Wilson, S. S., Wiens, M. E., Holly, M. K. and Smith, J. G. (2016) Defensins at the mucosal surface: latest insights into defensin-virus interactions. J. Virol. 90, 5216-5218.   DOI
62 Wilson, S. S., Wiens, M. E. and Smith, J. G. (2013) Antiviral mechanisms of human defensins. J. Mol. Biol. 425, 4965-4980.   DOI
63 Raj, P. A., Antonyraj, K. J. and Karunakaran, T. (2000) Large-scale synthesis and functional elements for the antimicrobial activity of defensins. Biochem. J. 347 Pt 3, 633-641.   DOI
64 Pone, E. J., Xu, Z., White, C. A., Zan, H. and Casali, P. (2012) B cell TLRs and induction of immunoglobulin class-switch DNA recombination. Front. Biosci. (Landmark Ed.) 17, 2594-2615.   DOI
65 Proud, D., Sanders, S. P. and Wiehler, S. (2004) Human rhinovirus infection induces airway epithelial cell production of human betadefensin 2 both in vitro and in vivo. J. Immunol. 172, 4637-4645.   DOI
66 Quinones-Mateu, M. E., Lederman, M. M., Feng, Z., Chakraborty, B., Weber, J., Rangel, H. R., Marotta, M. L., Mirza, M., Jiang, B., Kiser, P., Medvik, K., Sieg, S. F. and Weinberg, A. (2003) Human epithelial ${\beta}$-defensins 2 and 3 inhibit HIV-1 replication. AIDS 17, F39-F48.   DOI
67 Rapista, A., Ding, J., Benito, B., Lo, Y. T., Neiditch, M. B., Lu, W. and Chang, T. L. (2011) Human defensins 5 and 6 enhance HIV-1 infectivity through promoting HIV attachment. Retrovirology 8, 45.   DOI
68 Roberts, J. N., Graham, B. S., Karron, R. A., Munoz, F. M., Falsey, A. R., Anderson, L. J., Marshall, V., Kim, S. and Beeler, J. A. (2016) Challenges and opportunities in RSV vaccine development: Meeting report from FDA/NIH workshop. Vaccine 34, 4843-4849.   DOI
69 Rohrl, J., Yang, D., Oppenheim, J. J. and Hehlgans, T. (2010a) Human beta-defensin 2 and 3 and their mouse orthologs induce chemotaxis through interaction with CCR2. J. Immunol. 184, 6688-6694.   DOI
70 Pica, N. and Palese, P. (2013) Toward a universal influenza virus vaccine: prospects and challenges. Annu. Rev. Med. 64, 189-202.   DOI
71 Edfeldt, K., Liu, P. T., Chun, R., Fabri, M., Schenk, M., Wheelwright, M., Keegan, C., Krutzik, S. R., Adams, J. S., Hewison, M. and Modlin, R. L. (2010) T-cell cytokines differentially control human monocyte antimicrobial responses by regulating vitamin D metabolism. Proc. Natl. Acad. Sci. U.S.A. 107, 22593-22598.   DOI
72 Dowd, K. A., Jost, C. A., Durbin, A. P., Whitehead, S. S. and Pierson, T. C. (2011) A dynamic landscape for antibody binding modulates antibody-mediated neutralization of West Nile virus. PLoS Pathog. 7, e1002111.   DOI
73 Dowd, K. A., Mukherjee, S., Kuhn, R. J. and Pierson, T. C. (2014) Combined effects of the structural heterogeneity and dynamics of flaviviruses on antibody recognition. J. Virol. 88, 11726-11737.   DOI
74 Dugan, A. S., Maginnis, M. S., Jordan, J. A., Gasparovic, M. L., Manley, K., Page, R., Williams, G., Porter, E., O'Hara, B. A. and Atwood, W. J. (2008) Human alpha-defensins inhibit BK virus infection by aggregating virions and blocking binding to host cells. J. Biol. Chem. 283, 31125-31132.   DOI
75 Scott, L. J. (2016) Tetravalent dengue vaccine: a review in the prevention of dengue disease. Drugs 76, 1301-1312.   DOI
76 Semple, F., MacPherson, H., Webb, S., Kilanowski, F., Lettice, L., Mc- Glasson, S. L., Wheeler, A. P., Chen, V., Millhauser, G. L., Melrose, L., Davidson, D. J. and Dorin, J. R. (2015) Human ${\beta}$-defensin 3 [corrected] exacerbates MDA5 but suppresses TLR3 responses to the viral molecular pattern mimic polyinosinic:polycytidylic acid. PLoS Genet. 11, e1005673.   DOI
77 Seo, E. S., Blaum, B. S., Vargues, T., De Cecco, M., Deakin, J. A., Lyon, M., Barran, P. E., Campopiano, D. J. and Uhrin, D. (2010) Interaction of human ${\beta}$-defensin 2 (HBD2) with glycosaminoglycans. Biochemistry 49, 10486-10495.   DOI
78 Uyangaa, E., Kim, J. H., Patil, A. M., Choi, J. Y., Kim, S. B. and Eo, S. K. (2015) Distinct upstream role of type I IFN signaling in hematopoietic stem cell-derived and epithelial resident cells for concerted Recruitment of Ly-6Chi monocytes and NK cells via CCL2-CCL3 cascade. PLoS Pathog. 11, e1005256.   DOI
79 Hancock, R. E. and Diamond, G. (2000) The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol. 8, 402-410.   DOI
80 Tewary, P., de la Rosa, G., Sharma, N., Rodriguez, L. G., Tarasov, S. G., Howard, O. M., Shirota, H., Steinhagen, F., Klinman, D. M., Yang, D. and Oppenheim, J. J. (2013) ${\beta}$-Defensin 2 and 3 promote the uptake of self or CpG DNA, enhance IFN-${\alpha}$ production by human plasmacytoid dendritic cells, and promote inflammation. J. Immunol. 191, 865-874.   DOI
81 Vanheule, V., Vervaeke, P., Mortier, A., Noppen, S., Gouwy, M., Snoeck, R., Andrei, G., Van Damme, J., Liekens, S. and Proost, P. (2016) Basic chemokine-derived glycosaminoglycan binding peptides exert antiviral properties against dengue virus serotype 2, herpes simplex virus-1 and respiratory syncytial virus. Biochem. Pharmacol. 100, 73-85.   DOI
82 Vannice, K. S., Roehrig, J. T. and Hombach, J. (2015) Next generation dengue vaccines: a review of the preclinical development pipeline. Vaccine 33, 7091-7099.   DOI
83 Vemula, S. V., Amen, O., Katz, J. M., Donis, R., Sambhara, S. and Mittal, S. K. (2013a) Beta-defensin 2 enhances immunogenicity and protection of an adenovirus-based H5N1 influenza vaccine at an early time. Virus Res. 178, 398-403.   DOI
84 Vemula, S. V., Pandey, A., Singh, N., Katz, J. M., Donis, R., Sambhara, S. and Mittal, S. K. (2013b) Adenoviral vector expressing murine ${\beta}$-defensin 2 enhances immunogenicity of an adenoviral vector based H5N1 influenza vaccine in aged mice. Virus Res. 177, 55- 61.   DOI
85 Wu, Z., Ericksen, B., Tucker, K., Lubkowski, J. and Lu, W. (2004) Synthesis and characterization of human alpha-defensins 4-6. J. Pept. Res. 64, 118-125.   DOI
86 Wohlford-Lenane, C. L., Meyerholz, D. K., Perlman, S., Zhou, H., Tran, D., Selsted, M. E. and McCray, P. B., Jr. (2009) Rhesus theta-defensin prevents death in a mouse model of severe acute respiratory syndrome coronavirus pulmonary disease. J. Virol. 83, 11385-11390.   DOI
87 Woo, J. I., Kil, S. H., Brough, D. E., Lee, Y. J., Lim, D. J. and Moon, S. K. (2015) Therapeutic potential of adenovirus-mediated delivery of ${\beta}$-defensin 2 for experimental otitis media. Innate Immun. 21, 215-224.   DOI
88 Wu, Z., Cocchi, F., Gentles, D., Ericksen, B., Lubkowski, J., Devico, A., Lehrer, R. I. and Lu, W. (2005) Human neutrophil alpha-defensin 4 inhibits HIV-1 infection in vitro. FEBS Lett. 579, 162-166.   DOI
89 Sittisombut, N., Maneekarn, N., Kanjanahaluethai, A., Kasinrerk, W., Viputtikul, K. and Supawadee, J. (1995) Lack of augmenting effect of interferon-gamma on dengue virus multiplication in human peripheral blood monocytes. J. Med. Virol. 45, 43-49.   DOI
90 Sharadadevi, A. and Nagaraj, R. (2010) A molecular dynamics study of human defensins HBD-1 and HNP-3 in water. J. Biomol. Struct. Dyn. 27, 541-550.   DOI
91 Smith, J. G. and Nemerow, G. R. (2008) Mechanism of adenovirus neutralization by Human alpha-defensins. Cell Host Microbe 3, 11- 19.   DOI
92 Smith, J. G., Silvestry, M., Lindert, S., Lu, W., Nemerow, G. R. and Stewart, P. L. (2010) Insight into the mechanisms of adenovirus capsid disassembly from studies of defensin neutralization. PLoS Pathog. 6, e1000959.   DOI
93 Suarez-Carmona, M., Hubert, P., Delvenne, P. and Herfs, M. (2015) Defensins: "Simple" antimicrobial peptides or broad-spectrum molecules? Cytokine Growth Factor Rev. 26, 361-370.   DOI
94 Herrera, R., Morris, M., Rosbe, K., Feng, Z., Weinberg, A. and Tugizov, S. (2016) Human beta-defensins 2 and -3 cointernalize with human immunodeficiency virus via heparan sulfate proteoglycans and reduce infectivity of intracellular virions in tonsil epithelial cells. Virology 487, 172-187.   DOI
95 Hartshorn, K. L., White, M. R., Tecle, T., Holmskov, U. and Crouch, E. C. (2006) Innate defense against influenza A virus: activity of human neutrophil defensins and interactions of defensins with surfactant protein D. J. Immunol. 176, 6962-6972.   DOI
96 Hazrati, E., Galen, B., Lu, W., Wang, W., Ouyang, Y., Keller, M. J., Lehrer, R. I. and Herold, B. C. (2006) Human alpha- and beta-defensins block multiple steps in herpes simplex virus infection. J. Immunol. 177, 8658-8666.   DOI
97 Heapy, A. M., Williams, G. M., Fraser, J. D. and Brimble, M. A. (2012) Synthesis of a dicarba analogue of human beta-defensin-1 using a combined ring closing metathesis--native chemical ligation strategy. Org. Lett. 14, 878-881.   DOI
98 Hill, D. A., Baron, S. and Chanock, R. M. (1969) The effect of an interferon inducer on influenza virus. Bull. World Health Organ. 41, 689-693.
99 Hokeness, K. L., Kuziel, W. A., Biron, C. A. and Salazar-Mather, T. P. (2005) Monocyte chemoattractant protein-1 and CCR2 interactions are required for IFN-alpha/beta-induced inflammatory responses and antiviral defense in liver. J. Immunol. 174, 1549-1556.   DOI
100 Hoover, D. M., Chertov, O. and Lubkowski, J. (2001) The structure of human beta-defensin-1: new insights into structural properties of beta-defensins. J. Biol. Chem. 276, 39021-39026.   DOI
101 Hoover, D. M., Wu, Z., Tucker, K., Lu, W. and Lubkowski, J. (2003) Antimicrobial characterization of human beta-defensin 3 derivatives. Antimicrob. Agents Chemother. 47, 2804-2809.   DOI
102 Jang, Y. H. and Seong, B. L. (2014) Options and obstacles for designing a universal influenza vaccine. Viruses 6, 3159-3180.   DOI
103 Vos, Q., Lees, A., Wu, Z. Q., Snapper, C. M. and Mond, J. J. (2000) Bcell activation by T-cell-independent type 2 antigens as an integral part of the humoral immune response to pathogenic microorganisms. Immunol. Rev. 176, 154-170.   DOI
104 Wang, A., Chen, F., Wang, Y., Shen, M., Xu, Y., Hu, J., Wang, S., Geng, F., Wang, C., Ran, X., Su, Y., Cheng, T. and Wang, J. (2013) Enhancement of antiviral activity of human alpha-defensin 5 against herpes simplex virus 2 by arginine mutagenesis at adaptive evolution sites. J. Virol. 87, 2835-2845.   DOI
105 Watanabe, T., Watanabe, S., Maher, E. A., Neumann, G. and Kawaoka, Y. (2014) Pandemic potential of avian influenza A (H7N9) viruses. Trends Microbiol. 22, 623-631.   DOI
106 Watford, W. T., Moriguchi, M., Morinobu, A. and O'Shea, J. J. (2003) The biology of IL-12: coordinating innate and adaptive immune responses. Cytokine Growth Factor Rev. 14, 361-368.   DOI
107 Weinberg, A., Quinones-Mateu, M. E. and Lederman, M. M. (2006) Role of human beta-defensins in HIV infection. Adv. Dent. Res. 19, 42-48.   DOI
108 Wencker, M. and Brantly, M. L. (2005) Cytotoxic concentrations of alpha-defensins in the lungs of individuals with alpha 1-antitrypsin deficiency and moderate to severe lung disease. Cytokine 32, 1-6.   DOI
109 LeMessurier, K. S., Lin, Y., McCullers, J. A. and Samarasinghe, A. E. (2016) Antimicrobial peptides alter early immune response to influenza A virus infection in C57BL/6 mice. Antiviral. Res. 133, 208-217.   DOI
110 Leikina, E., Delanoe-Ayari, H., Melikov, K., Cho, M. S., Chen, A., Waring, A. J., Wang, W., Xie, Y., Loo, J. A., Lehrer, R. I. and Chernomordik, L. V. (2005) Carbohydrate-binding molecules inhibit viral fusion and entry by crosslinking membrane glycoproteins. Nat. Immunol. 6, 995-1001.   DOI
111 Li, W., Feng, Y., Kuang, Y., Zeng, W., Yang, Y., Li, H., Jiang, Z. and Li, M. (2014) Construction of eukaryotic expression vector with mBD1- mBD3 fusion genes and exploring its activity against influenza A virus. Viruses 6, 1237-1252.   DOI
112 Liang, Z., Wu, S., Li, Y., He, L., Wu, M., Jiang, L., Feng, L., Zhang, P. and Huang, X. (2011) Activation of Toll-like receptor 3 impairs the dengue virus serotype 2 replication through induction of IFN-${\beta}$ in cultured hepatoma cells. PLoS ONE 6, e23346.   DOI
113 Mahanonda, R., Sa-Ard-Iam, N., Rerkyen, P., Thitithanyanont, A., Subbalekha, K. and Pichyangkul, S. (2012) MxA expression induced by ${\alpha}$-defensin in healthy human periodontal tissue. Eur. J. Immunol. 42, 946-956.   DOI
114 White, M. R., Tecle, T., Crouch, E. C. and Hartshorn, K. L. (2007) Impact of neutrophils on antiviral activity of human bronchoalveolar lavage fluid. Am. J. Physiol. Lung Cell Mol. Physiol. 293, L1293- L1299.   DOI
115 Wie, S. H., Du, P., Luong, T. Q., Rought, S. E., Beliakova-Bethell, N., Lozach, J., Corbeil, J., Kornbluth, R. S., Richman, D. D. and Woelk, C. H. (2013) HIV downregulates interferon-stimulated genes in primary macrophages. J. Interferon Cytokine Res. 33, 90-95.   DOI
116 Wiehler, S. and Proud, D. (2007) Interleukin-17A modulates human airway epithelial responses to human rhinovirus infection. Am. J. Physiol. Lung Cell Mol. Physiol. 293, L505-L515.   DOI
117 Machado, L. R. and Ottolini, B. (2015) An evolutionary history of defensins: a role for copy number variation in maximizing host innate and adaptive immune responses. Front. Immunol. 6, 115.
118 Mackewicz, C. E., Yuan, J., Tran, P., Diaz, L., Mack, E., Selsted, M. E. and Levy, J. A. (2003) Alpha-Defensins can have anti-HIV activity but are not CD8 cell anti-HIV factors. AIDS 17, F23-F32.   DOI
119 Mandal, M. and Nagaraj, R. (2002) Antibacterial activities and conformations of synthetic alpha-defensin HNP-1 and analogs with one, two and three disulfide bridges. J. Pept. Res. 59, 95-104.   DOI
120 Yasin, B., Wang, W., Pang, M., Cheshenko, N., Hong, T., Waring, A. J., Herold, B. C., Wagar, E. A. and Lehrer R. I. (2004) Theta defensins protect cells from infection by herpes simplex virus by inhibiting viral adhesion and entry. J. Virol. 78, 5147-5156.   DOI
121 Yeung, A. T., Gellatly, S. L. and Hancock, R. E. (2011) Multifunctional cationic host defence peptides and their clinical applications. Cell. Mol. Life Sci. 68, 2161-2176.   DOI
122 Yin, L., Chino, T., Horst, O. V., Hacker, B. M., Clark, E. A., Dale, B. A. and Chung, W. O. (2010) Differential and coordinated expression of defensins and cytokines by gingival epithelial cells and dendritic cells in response to oral bacteria. BMC Immunol. 11, 37.   DOI
123 Zhu, S. and Gao, B. (2013) Evolutionary origin of ${\beta}$-defensins. Dev. Comp. Immunol. 39, 79-84.   DOI
124 Zhu, W., Li, J. and Liang, G. (2011) How does cellular heparan sulfate function in viral pathogenicity? Biomed. Environ. Sci. 24, 81-87.
125 Bastian, A. and Schafer, H. (2001) Human alpha-defensin 1 (HNP-1) inhibits adenoviral infection in vitro. Regul. Pept. 101, 157-161.   DOI
126 Albanesi, C., Fairchild, H. R., Madonna, S., Scarponi, C., De Pita, O., Leung, D. Y. and Howell, M. D. (2007) IL-4 and IL-13 negatively regulate TNF-alpha- and IFN-gamma-induced beta-defensin expression through STAT-6, suppressor of cytokine signaling (SOCS)-1, and SOCS-3. J. Immunol. 179, 984-992.   DOI
127 Alen, M. M., Dallmeier, K., Balzarini, J., Neyts, J. and Schols, D. (2012) Crucial role of the N-glycans on the viral E-envelope glycoprotein in DC-SIGN-mediated dengue virus infection. Antiviral Res. 96, 280-287.   DOI
128 Antcheva, N., Morgera, F., Creatti, L., Vaccari, L., Pag, U., Pacor, S., Shai, Y., Sahl, H. G. and Tossi, A. (2009) Artificial beta-defensin based on a minimal defensin template. Biochem. J. 421, 435-447.   DOI
129 Nikfar, S., Rahimi, R. and Abdollahi, M. (2010) A meta-analysis of the efficacy and tolerability of interferon-${\beta}$ in multiple sclerosis, overall and by drug and disease type. Clin. Ther. 32, 1871-1888.   DOI
130 Nishimura, M., Abiko, Y., Kurashige, Y., Takeshima, M., Yamazaki, M., Kusano, K., Saitoh, M., Nakashima, K., Inoue, T. and Kaku, T. (2004) Effect of defensin peptides on eukaryotic cells: primary epithelial cells, fibroblasts and squamous cell carcinoma cell lines. J. Dermatol. Sci. 36, 87-95.   DOI
131 Park, S., Kim, J. I., Lee, I., Bae, J. Y., Hwang, M. W., Kim, D., Jang, S. I., Kim, H., Park, M. S., Kwon, H. J., Song, J. W., Cho, Y. S., Chun, W. and Park, M. S. (2014) Inhibition of Pseudomonas aeruginosa with a recombinant RNA-based viral vector expressing human ${\beta}$-defensin 4. BMC Microbiol. 14, 237.   DOI
132 Openshaw, P. J. (2002) Potential therapeutic implications of new insights into respiratory syncytial virus disease. Respir Res. 3, S15- S20.   DOI
133 Openshaw, P. J. and Tregoning, J. S. (2005) Immune responses and disease enhancement during respiratory syncytial virus infection. Clin. Microbiol. Rev. 18, 541-555.   DOI
134 Park, M. S., Kim, J. I., Park, S., Lee, I. and Park, M. S. (2016) Original Antigenic Sin Response to RNA Viruses and Antiviral Immunity. Immune Netw. 16, 261-270.   DOI
135 Perron, G. G., Zasloff, M. and Bell, G. (2006) Experimental evolution of resistance to an antimicrobial peptide. Proc. Biol. Sci. 273, 251- 256.   DOI
136 Perry, C. M. and Wilde, M. I. (1998) Interferon-alpha-2a: a review of its use in chronic hepatitis C. BioDrugs 10, 65-89.   DOI
137 Phoenix, D. A., Dennison, S. R. and Harris, F. (2013) Antimicrobial peptides: their history, evolution, and functional promiscuity. In Antimicrobial Peptides, pp. 1-38. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.
138 Crack, L. R., Jones, L., Malavige, G. N., Patel, V. and Ogg, G. S. (2012) Human antimicrobial peptides LL-37 and human beta-defensin-2 reduce viral replication in keratinocytes infected with varicella zoster virus. Clin. Exp. Dermatol. 37, 534-543.   DOI
139 Chang, T. L., Vargas, J., Jr., DelPortillo, A. and Klotman, M. E. (2005) Dual role of alpha-defensin-1 in anti-HIV-1 innate immunity. J. Clin. Invest. 115, 765-773.   DOI
140 Collins, P. L. and Melero, J. A. (2011) Progress in understanding and controlling respiratory syncytial virus: still crazy after all these years. Virus Res. 162, 80-99.   DOI
141 Crane, M. J., Hokeness-Antonelli, K. L. and Salazar-Mather, T. P. (2009) Regulation of inflammatory monocyte/macrophage recruitment from the bone marrow during murine cytomegalovirus infection: role for type I interferons in localized induction of CCR2 ligands. J. Immunol. 183, 2810-2817.   DOI
142 Daher, K. A., Selsted, M. E. and Lehrer, R. I. (1986) Direct inactivation of viruses by human granulocyte defensins. J. Virol. 60, 1068- 1074.
143 de Leeuw, E., Burks, S. R., Li, X., Kao, J. P. and Lu, W. (2007) Structure- dependent functional properties of human defensin 5. FEBS Lett. 581, 515-520.   DOI
144 De Paula, V. S., Pomin, V. H. and Valente, A. P. (2014) Unique properties of human ${\beta}$-defensin 6 (hBD6) and glycosaminoglycan complex: sandwich-like dimerization and competition with the chemokine receptor 2 (CCR2) binding site. J. Biol. Chem. 289, 22969-22979.   DOI
145 Flatt, J. W., Kim, R., Smith, J. G., Nemerow, G. R. and Stewart, P. L. (2013) An intrinsically disordered region of the adenovirus capsid is implicated in neutralization by human alpha defensin 5. PLoS ONE 8, e61571.   DOI
146 Eisenhauer, P. B. and Lehrer, R. I. (1992) Mouse neutrophils lack defensins. Infect. Immun. 60, 3446-3447.
147 Erwin, D. H. and Davidson, E. H. (2002) The last common bilaterian ancestor. Development 129, 3021-3032.
148 Ferguson, N. M., Rodriguez-Barraquer, I., Dorigatti, I., Mier, Y. T.-R. L., Laydon, D. J. and Cummings, D. A. (2016) Benefits and risks of the Sanofi-Pasteur dengue vaccine: modeling optimal deployment. Science 353, 1033-1036.   DOI
149 Rohrl, J., Yang, D., Oppenheim, J. J. and Hehlgans, T. (2010b) Specific binding and chemotactic activity of mBD4 and its functional orthologue hBD2 to CCR6-expressing cells. J. Biol. Chem. 285, 7028-7034.   DOI
150 Demirkhanyan, L., Marin, M., Lu, W. and Melikyan, G. B. (2013) Subinhibitory concentrations of human ${\alpha}$-defensin potentiate neutralizing antibodies against HIV-1 gp41 pre-hairpin intermediates in the presence of serum. PLoS Pathog. 9, e1003431.   DOI
151 Rothman, A. L. (2011) Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nat. Rev. Immunol. 11, 532-543.   DOI
152 Ryan, L. K., Dai, J., Yin, Z., Megjugorac, N., Uhlhorn, V., Yim, S., Schwartz, K. D., Abrahams, J. M., Diamond, G. and Fitzgerald-Bocarsly, P. (2011) Modulation of human beta-defensin-1 (hBD-1) in plasmacytoid dendritic cells (PDC), monocytes, and epithelial cells by influenza virus, Herpes simplex virus, and Sendai virus and its possible role in innate immunity. J. Leukoc. Biol. 90, 343-356.   DOI
153 Ryan, L. K., Diamond, G., Amrute, S., Feng, Z., Weinberg, A. and Fitzgerald-Bocarsly, P. (2003) Detection of HBD1 peptide in peripheral blood mononuclear cell subpopulations by intracellular flow cytometry. Peptides 24, 1785-1794.   DOI
154 Saitoh, T., Komano, J., Saitoh, Y., Misawa, T., Takahama, M., Kozaki, T., Uehata, T., Iwasaki, H., Omori, H., Yamaoka, S., Yamamoto, N. and Akira, S. (2012) Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe 12, 109-116.   DOI
155 Salvatore, M., Garcia-Sastre, A., Ruchala, P., Lehrer, R. I., Chang, T. and Klotman, M. E. (2007) alpha-Defensin inhibits influenza virus replication by cell-mediated mechanism(s). J. Infect. Dis. 196, 835- 843.   DOI
156 Ganz, T., Selsted, M. E., Szklarek, D., Harwig, S. S., Daher, K., Bainton, D. F. and Lehrer, R. I. (1985) Defensins. Natural peptide antibiotics of human neutrophils. J. Clin. Invest. 76, 1427-1435.   DOI
157 Fox, J. L. (2013) Antimicrobial peptides stage a comeback. Nat. Biotechnol. 31, 379-382.   DOI
158 Furci, L., Tolazzi, M., Sironi, F., Vassena, L. and Lusso, P. (2012) Inhibition of HIV-1 infection by human ${\alpha}$-defensin-5, a natural antimicrobial peptide expressed in the genital and intestinal mucosae. PLoS ONE 7, e45208.   DOI
159 Ganz, T. (2003) Defensins: antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 3, 710-720.   DOI
160 Gao, X. F., Yang, Z. W. and Li, J. (2011) Adjunctive therapy with interferon- gamma for the treatment of pulmonary tuberculosis: a systematic review. Int. J. Infect. Dis. 15, e594-e600.   DOI
161 Garcia, A. E., Osapay, G., Tran, P. A., Yuan, J. and Selsted, M. E. (2008) Isolation, synthesis, and antimicrobial activities of naturally occurring theta-defensin isoforms from baboon leukocytes. Infect. Immun. 76, 5883-5891.   DOI
162 Sun, L., Finnegan, C. M., Kish-Catalone, T., Blumenthal, R., Garzino- Demo, P., La Terra Maggiore, G. M., Berrone, S., Kleinman, C., Wu, Z., Abdelwahab, S., Lu, W. and Garzino-Demo, A. (2005) Human beta-defensins suppress human immunodeficiency virus infection: potential role in mucosal protection. J. Virol. 79, 14318-14329.   DOI
163 Surasombatpattana, P., Hamel, R., Patramool, S., Luplertlop, N., Thomas, F., Despres, P., Briant, L., Yssel, H. and Misse, D. (2011) Dengue virus replication in infected human keratinocytes leads to activation of antiviral innate immune responses. Infect. Genet. Evol. 11, 1664-1673.   DOI
164 Tecle, T., White, M. R., Gantz, D., Crouch, E. C. and Hartshorn, K. L. (2007) Human neutrophil defensins increase neutrophil uptake of influenza A virus and bacteria and modify virus-induced respiratory burst responses. J. Immunol. 178, 8046-8052.   DOI
165 Savelkoul, H. F., Ferro, V. A., Strioga, M. M. and Schijns, V. E. (2015) Choice and design of adjuvants for parenteral and mucosal vaccines. Vaccines (Basel) 3, 148-171.   DOI
166 Schutte, B. C., Mitros, J. P., Bartlett, J. A., Walters, J. D., Jia, H. P., Welsh, M. J., Casavant, T. L. and McCray, P. B., Jr. (2002) Discovery of five conserved beta -defensin gene clusters using a computational search strategy. Proc. Natl. Acad. Sci. U.S.A. 99, 2129-2133.   DOI
167 Swanson, C. L., Wilson, T. J., Strauch, P., Colonna, M., Pelanda, R. and Torres, R. M. (2010) Type I IFN enhances follicular B cell contribution to the T cell-independent antibody response. J. Exp. Med. 207, 1485-1500.   DOI
168 Szyk, A., Wu, Z., Tucker, K., Yang, D., Lu, W. and Lubkowski, J. (2006) Crystal structures of human alpha-defensins HNP4, HD5, and HD6. Protein Sci. 15, 2749-2760.   DOI
169 Tate, M. D., Job, E. R., Deng, Y. M., Gunalan, V., Maurer-Stroh, S. and Reading, P. C. (2014) Playing hide and seek: how glycosylation of the influenza virus hemagglutinin can modulate the immune response to infection. Viruses 6, 1294-1316.   DOI
170 Tenge, V. R., Gounder, A. P., Wiens, M. E., Lu, W. and Smith, J. G. (2014) Delineation of interfaces on human alpha-defensins critical for human adenovirus and human papillomavirus inhibition. PLoS Pathog. 10, e1004360.   DOI