• Title/Summary/Keyword: antioxidative assay

Search Result 507, Processing Time 0.026 seconds

Anti-oxidant Effects of Samultang-Gami on MEF Cells (사물탕가미방(四物湯加味方)의 항산화 활성에 대한 실험적 연구)

  • Jung, Jae-Joong;Goo, Sun-Young;Go, Eun-Bi;Sung, Jung-Suk;Kim, Dong-Il
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.23 no.3
    • /
    • pp.26-37
    • /
    • 2010
  • Purpose: This experiment is designed to find out anti-oxidant effects of Samultang-Gami which was composed of Rehmanniae Radix(RR), Angelicae Gigantis Radix, Cnidii Rhizoma(CR), Paeoniae Radix(PR), Cortex Moutan Radicis, Hedyotis Diffusa(HD) and Caesalpinia Sappan on MEF cells. Methods: In vitro antioxidant effects were measured by MTT assay, DPPH assay, cell cycle analysis, AnnexinV-FITC/PI assay and DAPI staining using MEF cells treated with various concentrations of 70% ethanol extract of Samultang-Gami. Results: 1. In the scavenging for DPPH radical, the each treated groups of PR, CR and HD showed positive effects. RR and CR increased the viability of oxidative damaged MEF cells in a dose-dependent manner. 2. 70% ethanol extract of Samultang-Gami was shown best antioxidative effect in the concentration of $0.5mg/m{\ell}$. 3. The treatment of Samultang-Gami in oxidative damaged MEF cells didn't have any effect on cell cycle restoration. but it could lower late apoptosis rate a little and be observed the protection of nucleus. Conclusion: It can be concluded that Samultang-Gami, RR and CR have antioxidant effects on MEF cells.

Antioxidative Activities and Inhibition Effects on Oxidative DNA Damage of Valeriana fauriei (쥐오줌풀의 항산화 및 산화적 DNA 손상 억제 활성)

  • Park, Jae Ho;Jang, Tae Won;Lee, Seung Hyun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.6
    • /
    • pp.464-470
    • /
    • 2016
  • Background: Valeriana fauriei (Valerianaceae) has been used to as a traditional medicine to treat a variety of symptoms, including headache, insomnia, hypertension, and menstrual irregularity. However, the present study investigates the species' antioxidant activity and its inhibition of oxidative DNA damage, which have yet to be studied. Methods and Results: The antioxidant activity was assessed using radical scavenging assays with 1,1-diphenyl-2-picryl hydrazyl (DPPH) and, 2, 2'-azino-bis (3-ethylbenzothiazoline-6 sulfonic acid) diammonium salt (ABTS) and a reducing power assay. The total phenol content was also analyzed, and phenolic compounds were detected using HPLC/UV, whereas the inhibitory effect of Valeriana fauriei on oxidative DNA damage was measured using ${\phi}-174$ RF I plasmid DNA cleavage assay. The DPPH and ABTS radical scavenging activity were $75.17{\pm}3.55%$ and $95.83{\pm}0.63%$, repectively, and the reducing power was $93.14{\pm}1.74$ at $200{\mu}g/m{\ell}$. The total phenol content was $10.24{\pm}0.04mg/g$, whereas chlorogenic acid, catechin, caffeic acid and epicatechin were identified using HPLC/UV, and the ${\phi}-174$ RF I plasmid DNA cleavage assay indicated that V. fauriei provided protection against oxidative damage. Conclusions: The results of the present study suggest that V. fauriei has powerful antioxidant activity that can provide protective effects against the oxidative DNA damage caused by free radicals. The species, therefore, provides a valuable resource for the development of natural pharmaceutical to treat aging, cancer, and degenerative diseases.

Scavenging Effects of Ginkgo biloba Extract on Paraquat Induced Toxicity (Paraquat 유도독성에 대한 Ginkgo biloba Extract의 독성경감효과(I))

  • 최병기;김영찬
    • Environmental Analysis Health and Toxicology
    • /
    • v.13 no.3_4
    • /
    • pp.105-115
    • /
    • 1998
  • Reactive oxygen species (ROS) are highly reactive molecules due to their unpaired electron. They have been suspected as one of the major tissue damage inducers in biological metabolic systems. Antioxidant enzymes, such as catalase and superoxide dismutase, could not repair all the oxidative damages resulting from those excessive toxic ROS. It is, therefore, urgent to develop effective antioxidants to relieve from the oxidatire damages. In this study antioxidative effects were investigated by using two flavonoids such as quercetin and naringenin and a flavonoid-rich extract, Ginkgo biloba extract in combination with paraquat that is known as a strong generator of oxygen radicals. The results are summeringed as follows: 1. To assess radical scavenging ability reduction concentrations (IC$_{50}$) of 1,1-diphenyl-2-picrylhydrazine (DPPH) within 15 minutes were measured. The values of the IC$_{50}$ of quercetin and Ginkgo biloba extract were 15.4 $\mu$M and 13.2$\mu$g/ml, respectively. Their radical removing activities showed concentration-dependent manners. 2. In the hydrogen peroxide assay by using PMS-NADH system, quercetin, naringenin and Ginkgo biloba extract led to removing hydrogen peroxide in concentrationdependent manner whose removing abilities at 100$\mu$M or 100 $\mu$g/ml were 75.6, 25.8 and 26.0%, respectively. 3. In the hydrogen peroxide-induced rat blood hemolysis assay all three compounds led to similar effects whose hemolysis inhibition ratios at 100$\mu$M or 100$\mu$g/ml were 68.0, 5.14 and 55.8%, respectively. 4. In the xanthinee oxidase assay by measuring degree of NADH oxidation in the presence of hypoxanthine and xanthinee oxidase, both quercetin and Ginkgo biloba extract showed excellent activities showing 42.8 and 24.2% inhibiting xanthine oxidase activity at 100$\mu$M or 100$\mu$g/ml concentrations, respectively.

  • PDF

Effects of Korean ginseng berry on skin antipigmentation and antiaging via FoxO3a activation

  • Kim, Juewon;Cho, Si Young;Kim, Su Hwan;Cho, Donghyun;Kim, Sunmi;Park, Chan-Woong;Shimizu, Takahiko;Cho, Jae Youl;Seo, Dae Bang;Shin, Song Seok
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.277-283
    • /
    • 2017
  • Background: The ginseng berry has various bioactivities, including antidiabetic, anticancer, antiinflammatory, and antioxidative properties. Moreover, we have revealed that the active antiaging component of the ginseng berry, syringaresinol, has the ability to stimulate longevity via gene activation. Despite the many known beneficial effects of ginseng, its effects on skin aging are poorly understood. In this study, we investigated the effects of ginseng and the ginseng berry on one of the skin aging processes, melanogenesis, and age-related pigment lipofuscin accumulation, to elucidate the mechanism of action with respect to antiaging. Methods: The human melanoma MNT1 cell line was treated with ginseng root extract, ginseng berry extract, or syringaresinol. Then, the cells were analyzed using a melanin assay, and the tyrosinase activity was estimated. The Caenorhabditis elegans wild type N2 strain was used for the life span assay to analyze the antiaging effects of the samples. A lipofuscin fluorescence assay was performed during 10 passages with the syringaresinol treatment. Results: A 7-d treatment with ginseng berry extract reduced melanin accumulation and tyrosinase activity more than ginseng root extract. These results may be due to the active compound of the ginseng berry, syringaresinol. The antimelanogenic activity was strongly coordinated with the activation of the longevity gene foxo3a. Moreover, the ginseng berry extract had more potent antiaging effects, caused a life span extension, and reduced lipofuscin accumulation. Conclusion: Taken together, our results suggest that these antimelanogenic effects and antiaging effects of ginseng berry mediate the activation of antioxidation-FoxO3a signaling.

Anti-Inflammatory Effect of the Extracts from Leaves and Stems of Thymus quinquecistatus var. japonica (H.Hara) (섬백리향 잎과 줄기 추출물의 항염 활성에 관한 세포생물학적 연구)

  • Lee, Sun-Mi;Baek, Jeong-In
    • The Korea Journal of Herbology
    • /
    • v.36 no.5
    • /
    • pp.125-133
    • /
    • 2021
  • Objectives : Thymus quinquecistatus var. japonica (H.Hara) is a member of the genus Thymus of perennial aromatic herb, and it's designated as a natural monument of South Korea. It has traditionally been known to have protective or therapeutic effects on various human disease including cerebrovascular and neurological disease. Recently it was suggested that essential oil extracted from thyme has anti-fungal and anti-bacterial effect. The aim of this study is to investigate anti-inflammatory effect of Thymus quinquecistatus var. japonica in Raw 264.7 macrophage cell line. Methods : The cytotoxic effects of water and 70% ethanol extracts from Thymus quinquecistatus var. japonica, was tested using MTT assay. Inhibitory effects of the extracts to nitric oxide production and mRNA expression of inflammatory cytokines were examined by RT-PCR. Also, MitoSOX-red assay and JC-1 assay were performed to determine if the extracts can inhibit mitochondrial ROS accumulation and maintain mitochondrial membrane potential. Results : In LPS-induced inflammatory response, the extracts efficiently reduced nitric oxide NO production through inhibiting mRNA expression of iNOS enzyme. In addition, expression of the proinflammatory cytokines, IL-1𝛽 and IL-6, was also down-regulated by the extract treatments. Excessive accumulation of mitochondrial ROS induced by LPS was inhibited in the extract treated cells, which finally protected mitochondrial membrane potential. Conclusions : These results showed that water and 70% ethanol extracts from Thymus quinquecistatus var. japonica have anti-inflammatory effect through down regulation of IL-1𝛽, IL-6, and iNOS, and also have antioxidative effect against mitochondrial ROS accumulation that promote inflammatory response.

Protective effect of Caryophylli Flos on apoptosis caused by oxidative stress in HaCaT cells (HaCaT 세포의 산화 스트레스로 인한 세포자멸사에서 정향의 보호효과)

  • Park, Sook Jahr
    • The Korea Journal of Herbology
    • /
    • v.36 no.5
    • /
    • pp.93-99
    • /
    • 2021
  • Objective : Caryophylli Flos has been used in Korean medicine to relieve vomiting and pains caused by chills that make fluid circulation difficult. This study was designed to investigate the protective effect of ethanol extract of Caryophylli Flos (CF) in hydrogen peroxide (H2O2)-induced apoptotic cell death in human keratinocyte HaCaT cells. Methods : CF was prepared by extracting 200 g of Caryophylli Flos in 2 L of ethanol for 48 h. Cell viability was measured by MTT assay, and the protein expression was monitored by Western blot analysis. Apoptosis was determined by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Reactive oxygen species (ROS) was measured using fluorescent dye, and reduced glutathione (GSH) was determined with a colorimetric commercial kit. Results : CF protected HaCaT cells from cell death caused by oxidative stress after H2O2 treatment. H2O2 amplified generation of ROS and induced depletion of GSH, whereas these changes in ROS and GSH were inhibited by GF treatment. In addition, H2O2 resulted in apoptosis as assessed by TUNEL assay and the expression of apoptosis regulator proteins. However, cells treated with CF showed a decrease in TUNEL-positive cells and restored the reduced expression of procaspase-9, -3 and PARP. Conclusion : This study showed cytoprotective effects of CF by anti-apoptotic activity while exerting antioxidative activity in H2O2-treated HaCaT cells. These results suggest that CF could be beneficial in skin damage caused by oxidative stress.

Neuroprotective Effect of Insamyangyung-tang (인삼양영탕(人蔘養營湯)의 산화적 stress에 대한 뇌세포 보호효과)

  • Kim, Seung-Hyun;Lee, Chang-Hoon;Lee, Jin-Moo;Cho, Jung-Hoon;Jang, Jun-Bock;Lee, Kyung-Sub
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.22 no.1
    • /
    • pp.1-14
    • /
    • 2009
  • Purpose: Oxidative stress was thought to play a critical role in neurodegenerative disease. Many in vivo and in vitro reports explained the possible pathway of human aging. But in therapeutic aspects, there was no clear answers to prevent aging associated with neural diseases. In this study, we investigated the antioxidant and neuroprotective effects of the Insamyangyung-tang (IYT). Methods: To estimate the antioxidant effects, we carried out 1.1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assay, 2,2'-azinobis-(3- ethylbenzothiazoline-6- sulfonic acid (ABTS) radical cation decolorization assay, and measurement of total polyphenolic content. To evaluate neuroprotective effect of IYT in vitro. We performed thiazolyl blue tetrazolium bromide (MTT) assay, reactive oxygen species (ROS) creation in SH-SY5Y. Tyrosine hydroxylase (TH) immunocytochemistry, nitric oxide (NO) assay, and TNF-${\alpha}$ assay in primary rat mesencephalic dopaminergic neurons. Results: The $IC_{50}$ values were $571.6{\mu}g/m{\ell}$ and $202.3{\mu}g/m{\ell}$ in DPPH and ABTS assay respectively. Total polyphenolic content was 1.05%. In SH-SY5Y culture, IYT significantly increased the decreased cell viability by 6-OHDA at the concentrations of $10{\mu}g/m{\ell}$ in pre-treatment group, $10-100{\mu}g/m{\ell}$ in post-treatment group, and $100{\mu}g/m{\ell}$ in co-treatment group. The production of ROS induced by 6-OHDA was significantly inhibited in IYT treated group. In mesencephalic dopaminergic cell culture, the IYT group reduced the dopaminergic cell loss against 6-OHDA toxicity and the production of No and TNF-${\alpha}$ at the concentration of $0.2{\mu}g/m{\ell}$. Conclusion: These results showed that IYT has antioxidant and neuroprotectctive effects in the dopaminergic cells through decreasing the production of ROS, NO and TNF-${\alpha}$ which can cause many neurodegenerative changes in brain cell.

Inhibitory Effect of Naringenin on MMP-2, -9 Activity and Expression in HT-1080 Cells (HT1080 세포주에서 naringenin의 MMP-2, -9 효소 활성 및 발현 억제 효과)

  • Chae, Soo-Chul
    • Environmental Analysis Health and Toxicology
    • /
    • v.24 no.1
    • /
    • pp.63-70
    • /
    • 2009
  • Naringenin, major one of the citrus flavonoids, have been identified that exert antioxidative, anticancer effects. The present study investigated the effects of naringenin on tumor invasion and matrix metalloproteinases(MMPs) activities. Naringenin inhibited cell invasion of HT-1080 fibrosarcoma cells in a dose-dependent manner. The activities of MMP-2 and MMP-9 were inhibited by naringenin as demonstrated by gelatin zymography assay. Furthermore, the amounts of MMP-2, MMP-9, and MT1-MMP mRNA were analyzed in the cells. MMP-2, MMP-9, and MT1-MMP mRNA expression were suppressed by naringenin with time and dose-dependent. These results demonstrate that anti-metastatic activities of naringenin resulted from blocking of invasion of the HT-1080 cells. Taken together, the results of this studies provide evidence that naringenin possess an anti-metastatic activity.

Antigenotoxicity of Vegetable and Fruit Extracts

  • Chan Heo;Lee, Seung-Chul;Kim, Hyun-Pyo;Heo, Moon-Young
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.151-151
    • /
    • 2003
  • The ethanol extracts of mixed vegetables (Bioactive V, BV), mixed fruits (Bioactive F, BF) and their liquid formulation (Chungpae Plus(R)) were evaluated for antioxidative and antigenotoxic activity. They were shown to possess the significant free radical scavenging effect against 1,1-diphenyl-2-picryl hydrazine (DPPH) radical generation and were revealed to show the inhibitory effect of lipid peroxidation as measured by malondialdehyde (MDA) formation.(omitted)

  • PDF

Changes in the Compound and Bioactivity of Suaeda japonica Makino Extract by Different Harvesting Time

  • Choi, Ji-Hye;Lee, Sung-Gyu;Kang, Hyun
    • Biomedical Science Letters
    • /
    • v.26 no.4
    • /
    • pp.376-382
    • /
    • 2020
  • This study was the change of compound and bioactivity were analyzed by different harvesting time (May, August, and November) of Suaeda japonica Makino. The total polyphenol and flavonoid contents of S. japonica were the highest at about 22.81 mg GAE/g and 4.56 mg QE/g, respectively, in the S. japonica harvested in Nov. Also, the contents of quercetin, showed the highest content in Nov harvested S. japonica. In addition, the antioxidative activity of each extract from S. japonica changed depending on harvesting time. For S. japonica harvested in Nov showed the highest DPPH and ABTS radical scavenging activity. From the NO inhibition assay, the S. japonica harvested in Nov had shown the highest anti-inflammatory effects. Therefore, consideration of the optimal harvesting time for S. japonica could be an important factor attributing to its natural antioxidant and anti-inflammatory properties and the optimal harvesting time was confirmed especially to be in Nov.