• Title/Summary/Keyword: antioxidant systems

Search Result 356, Processing Time 0.037 seconds

Hydrogen sulfide, a gaseous signaling molecule, elongates primary cilia on kidney tubular epithelial cells by activating extracellular signal-regulated kinase

  • Han, Sang Jun;Kim, Jee In;Lipschutz, Joshua H.;Park, Kwon Moo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.6
    • /
    • pp.593-601
    • /
    • 2021
  • Primary cilia on kidney tubular cells play crucial roles in maintaining structure and physiological function. Emerging evidence indicates that the absence of primary cilia, and their length, are associated with kidney diseases. The length of primary cilia in kidney tubular epithelial cells depends, at least in part, on oxidative stress and extracellular signal-regulated kinase 1/2 (ERK) activation. Hydrogen sulfide (H2S) is involved in antioxidant systems and the ERK signaling pathway. Therefore, in this study, we investigated the role of H2S in primary cilia elongation and the downstream pathway. In cultured Madin-Darby Canine Kidney cells, the length of primary cilia gradually increased up to 4 days after the cells were grown to confluent monolayers. In addition, the expression of H2S-producing enzyme increased concomitantly with primary cilia length. Treatment with NaHS, an exogenous H2S donor, accelerated the elongation of primary cilia whereas DL-propargylglycine (a cystathionine γ-lyase inhibitor) and hydroxylamine (a cystathionine-β-synthase inhibitor) delayed their elongation. NaHS treatment increased ERK activation and Sec10 and Arl13b protein expression, both of which are involved in cilia formation and elongation. Treatment with U0126, an ERK inhibitor, delayed elongation of primary cilia and blocked the effect of NaHS-mediated primary cilia elongation and Sec10 and Arl13b upregulation. Finally, we also found that H2S accelerated primary cilia elongation after ischemic kidney injury. These results indicate that H2S lengthens primary cilia through ERK activation and a consequent increase in Sec10 and Arl13b expression, suggesting that H2S and its downstream targets could be novel molecular targets for regulating primary cilia.

Heat stress on microbiota composition, barrier integrity, and nutrient transport in gut, production performance, and its amelioration in farm animals

  • Patra, Amlan Kumar;Kar, Indrajit
    • Journal of Animal Science and Technology
    • /
    • v.63 no.2
    • /
    • pp.211-247
    • /
    • 2021
  • Livestock species experience several stresses, particularly weaning, transportation, overproduction, crowding, temperature, and diseases in their life. Heat stress (HS) is one of the most stressors, which is encountered in livestock production systems throughout the world, especially in the tropical regions and is likely to be intensified due to global rise in environmental temperature. The gut has emerged as one of the major target organs affected by HS. The alpha- and beta-diversity of gut microbiota composition are altered due to heat exposure to animals with greater colonization of pathogenic microbiota groups. HS also induces several changes in the gut including damages of microstructures of the mucosal epithelia, increased oxidative insults, reduced immunity, and increased permeability of the gut to toxins and pathogens. Vulnerability of the intestinal barrier integrity leads to invasion of pathogenic microbes and translocation of antigens to the blood circulations, which ultimately may cause systematic inflammations and immune responses. Moreover, digestion of nutrients in the guts may be impaired due to reduced enzymatic activity in the digesta, reduced surface areas for absorption and injury to the mucosal structure and altered expressions of the nutrient transport proteins and genes. The systematic hormonal changes due to HS along with alterations in immune and inflammatory responses often cause reduced feed intake and production performance in livestock and poultry. The altered microbiome likely orchestrates to the hosts for various relevant biological phenomena occurring in the body, but the exact mechanisms how functional communications occur between the microbiota and HS responses are yet to be elucidated. This review aims to discuss the effects of HS on microbiota composition, mucosal structure, oxidant-antioxidant balance mechanism, immunity, and barrier integrity in the gut, and production performance of farm animals along with the dietary ameliorations of HS. Also, this review attempts to explain the mechanisms how these biological responses are affected by HS.

The Effect of Caffeic Acid Phenethyl Ester (CAPE) on Phagocytic activity of septic Neutrophil in vitro

  • Eun-A Jang;Hui-Jing Han;Tran Duc Tin;Eunye Cho;Seongheon Lee;Sang Hyun Kwak
    • Biomedical Science Letters
    • /
    • v.29 no.4
    • /
    • pp.211-219
    • /
    • 2023
  • Caffeic acid phenethyl ester (CAPE) is an active component of propolis obtained from honeybee hives. CAPE possesses anti-mitogenic, anti-carcinogenic, anti-inflammatory, and immunomodulatory activities in diverse systems, which know as displays antioxidant activity and inhibits lipoxygenase activities, protein tyrosine kinase, and nuclear factor kappa B (NF-κB) activation. This study aimed to investigate the effect of CAPE on lipopolysaccharide (LPS)-induced human neutrophil phagocytosis. Human neutrophils were cultured with various concentrations of CAPE (1, 10, and 100 µM) with or without LPS. The pro-inflammatory proteins (tumor necrosis factor-alpha [TNF-α], interleukin [IL]-6 and IL-8) levels were measured after 4 h incubation. To investigate the intracellular signaling pathway, we measured the levels of mitogen-activated protein kinases (MAPK), including phosphorylation of p38, extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and c-Jun N-terminal kinase (JNK). Next, to evaluate the potential phagocytosis, neutrophils were labeled with iron particles of superparamagnetic iron oxide nanoparticles (SPIONs, 40 nm) for 1 h in culture medium containing 5 mg/mL of iron. The labeling efficiency was determined by Prussian blue staining for intracellular iron and 3T-wighted magnetic resonance imaging. CAPE decreased the activation of intracellular signaling pathways, including ERK1/2 and c-Jun, and expression of pro-inflammatory cytokines, including TNF-α and IL-6, but had no effect on the signaling pathways of p38 and cytokine IL-8. Furthermore, images obtained after mannan-coated SPION treatment suggested that CAPE induced significantly higher signal intensities than the control or LPS group. Together, these results suggest that CAPE regulates LPS-mediated activation of human neutrophils to reduce phagocytosis.

Comparison of Bioactive Compounds and Antioxidant Activity according to Culture Systems in Artemisia fukudo

  • Eun Bi Jang;Jong-Du Lee;Hyejin Hyeon;Yong-Hwan Jung;Weon-Jong Yoon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.99-99
    • /
    • 2022
  • Artemisia fukudo is a biennial plant and has been reported to have anticancer, anti-melanogenesis, and anti-inflammatory effects. However, it is difficult to produce biomass from A. fukudo, so it is not used as a material for cosmetics or pharmaceuticals. In vitro culture can stably produce biomass throughout the year. In this study, the culture system for producing the highest biomass and bioactive substances was compared. Ex vitro plants were collected in Pyoseon-eup, Jeju island in May 2021, and in vitro culture was harvested after culturing for 8 weeks (plantlet) and 4 weeks (adventitious roots), respectively. After harvest, total polyphenol content (TPC), total flavonoid content (TFC), and DPPH scavenging activity were analyzed. In biomass production, adventitious roots (FW: 5.1 g·100 ml-1, DW: 0.6 g·100 ml-1) were about 4 times higher than that of plantlets (FW: 1.8 g·200 ml-1, DW: 0.3 g·200 ml-1). Both TPC and TFC were highest in ex vitro plants (9.2 ㎍·mL-1, 31.6 ㎍·mL-1), and were 3.0 times and 1.8 times higher than those of plantlets (3.0 ㎍·mL-1, 17.8 ㎍·mL-1), respectively. The IC50 value of DPPH scavenging activity was also the best in ex vitro plants (69.8 ㎍·mL-1), followed by root root (184.4 ㎍·mL-1) and plants (325.3 ㎍·mL-1) in that order. Through additional elicitor treatment, scale-up, and advanced compounds analysis such as HPLC, it can be used as an industrial material.

  • PDF

Indoor feeding combined with restricted grazing time improves body health, slaughter performance, and meat quality in Huang-huai sheep

  • Yafeng Huang;Mengyu Zhao;Xiaoan Zhang;Huiqing Wei;Lumeng Liu;Zijun Zhang;Xiao Cheng;Guanjun Wang;Chunhuan Ren
    • Animal Bioscience
    • /
    • v.36 no.11
    • /
    • pp.1655-1665
    • /
    • 2023
  • Objective: The aim of this study was to evaluate the effects of three feeding systems, i.e., indoor feeding (CON), indoor feeding with 4-h daily access to grazing artificial pasture (ITGP), and indoor feeding with 8-h daily access to grazing artificial pasture (IEGP), on the plasma antioxidant and immunological capacity, slaughter characteristics, meat quality and economic efficiency of Huang-huai lambs. Methods: Thirty-three healthy Huang-huai rams with similar body weight (approximately 5 mo of age, 28.96±1.01 kg) were assigned equally to three experimental groups. When finished fattening, six lambs from each group were collect blood samples for plasma analyses and then slaughtered to determine slaughter characteristics and obtain biceps brachii muscle for further analysis of meat quality and fatty acid profile. Results: Compared to CON group, animals submitted to ITGP and IEGP groups resulted in greater contents of serum glutathione peroxidase, immunoglobulins (IgA, IgG, and IgM), polyunsaturated fatty acids (PUFA), n-6 PUFA, and PUFA/saturated fatty acid (FA) ratio and lower palmitic /oleic acid ratio (p<0.05). Moreover, animals in ITGP group exhibited a higher (p<0.05) loin eye area, content of meat crude protein (CP), and eicosetrienoic acid compared to CON group, while slaughter performance was superior (p<0.05) to that of the IEGP group. The economic efficiency of ITGP group was 70.12% higher than that of CON group, while the IEGP group exhibited a decrease of 92.54% in economic efficiency compared to the CON group. Conclusion: Restricted grazing time combined with indoor feeding was more effective in conferring superior body health, carcass traits and economic efficiency in Huang-huai lambs, as well as higher CP content and healthier FA composition in the resulting meat.

Animal protein hydrolysate reduces visceral fat and inhibits insulin resistance and hepatic steatosis in aged mice

  • Su-Kyung Shin;Ji-Yoon Lee;Heekyong R. Bae;Hae-Jin Park;Eun-Young Kwon
    • Nutrition Research and Practice
    • /
    • v.18 no.1
    • /
    • pp.46-61
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: An increasing life expectancy in society has burdened healthcare systems substantially because of the rising prevalence of age-related metabolic diseases. This study compared the effects of animal protein hydrolysate (APH) and casein on metabolic diseases using aged mice. MATERIALS/METHODS: Eight-week-old and 50-week-old C57BL/6J mice were used as the non-aged (YC group) and aged controls (NC group), respectively. The aged mice were divided randomly into 3 groups (NC, low-APH [LP], and high-APH [HP] and fed each experimental diet for 12 weeks. In the LP and HP groups, casein in the AIN-93G diet was substituted with 16 kcal% and 24 kcal% APH, respectively. The mice were sacrificed when they were 63-week-old, and plasma and hepatic lipid, white adipose tissue weight, hepatic glucose, lipid, and antioxidant enzyme activities, immunohistochemistry staining, and mRNA expression related to the glucose metabolism on liver and muscle were analyzed. RESULTS: Supplementation of APH in aging mice resulted in a significant decrease in visceral fat (epididymal, perirenal, retroperitoneal, and mesenteric fat) compared to the negative control (NC) group. The intraperitoneal glucose tolerance test and area under the curve analysis revealed insulin resistance in the NC group, which was alleviated by APH supplementation. APH supplementation reduced hepatic gluconeogenesis and increased glucose utilization in the liver and muscle. Furthermore, APH supplementation improved hepatic steatosis by reducing the hepatic fatty acid and phosphatidate phosphatase activity while increasing the hepatic carnitine palmitoyltransferase activity. Furthermore, in the APH supplementation groups, the red blood cell (RBC) thiobarbituric acid reactive substances and hepatic H2O2 levels decreased, and the RBC glutathione, hepatic catalase, and glutathione peroxidase activities increased. CONCLUSIONS: APH supplementation reduced visceral fat accumulation and alleviated obesity-related metabolic diseases, including insulin resistance and hepatic steatosis, in aged mice. Therefore, high-quality animal protein APH that reduces the molecular weight and enhances the protein digestibility-corrected amino acid score has potential as a dietary supplement for healthy aging.

Assessment of antinociceptive property of Cynara scolymus L. and possible mechanism of action in the formalin and writhing models of nociception in mice

  • Pegah Yaghooti;Samad Alimoahmmadi
    • The Korean Journal of Pain
    • /
    • v.37 no.3
    • /
    • pp.218-232
    • /
    • 2024
  • Background: Cynara scolymus has bioactive constituents and has been used for therapeutic actions. The present study was undertaken to investigate the mechanisms underlying pain-relieving effects of the hydroethanolic extract of C. scolymus (HECS). Methods: The antinociceptive activity of HECS was assessed through formalin and acetic acid-induced writhing tests at doses of 50, 100 and 200 mg/kg intraperitoneally. Additionally, naloxone (non-selective opioid receptors antagonist, 2 mg/kg), atropine (non-selective muscarinic receptors antagonist, 1 mg/kg), chlorpheniramine (histamine H1-receptor antagonist, 20 mg/kg), cimetidine (histamine H2-receptor antagonist, 12.5 mg/kg), flumazenil (GABAA/BDZ receptor antagonist, 5 mg/kg) and cyproheptadine (serotonin receptor antagonist, 4 mg/kg) were used to determine the systems implicated in HECS-induced analgesia. Impact of HECS on locomotor activity was executed by open-field test. Determination of total phenolic content (TPC) and total flavonoid content (TFC) was done. Evaluation of antioxidant activity was conducted employing 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay. Results: HECS (50, 100 and 200 mg/kg) significantly indicated dose dependent antinociceptive activity against pain-related behavior induced by formalin and acetic acid (P < 0.001). Pretreatment with naloxone, atropine and flumazenil significantly reversed HECS-induced analgesia. Antinociceptive effect of HECS remained unaffected by chlorpheniramine, cimetidine and cyproheptadine. Locomotor activity was not affected by HECS. TPC and TFC of HECS were 59.49 ± 5.57 mgGAE/g dry extract and 93.39 ± 17.16 mgRE/g dry extract, respectively. DPPH free radical scavenging activity (IC50) of HECS was 161.32 ± 0.03 ㎍/mL. Conclusions: HECS possesses antinociceptive activity which is mediated via opioidergic, cholinergic and GABAergic pathways.

Effects of Solvent Extracts from Dried Beet (Beta vulgaris) on Antioxidant in Cell Systems and Growth of Human Cancer Cell Lines (건조 비트(Beta vulgaris) 추출물의 Cell System에서 항산화 및 항암 효과)

  • Jang, Joo-Ri;Kim, Kyung-Kun;Lim, Sun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.7
    • /
    • pp.832-838
    • /
    • 2009
  • The inhibitory effects of solvent extracts from dried beet (Beta vulgaris) on $H_2O_2$-induced oxidative stress in cell systems and on the growth of cancer cell lines (HT-29 human colon cancer and AGS human gastric adenocarcinoma cells) were investigated. Inhibitory effects of acetone with methylene chloride (A+M) and methanol (MeOH) extracts on the growth of HT-29 and AGS cancer cells increased in a dose dependent manner (p<0.05). The inhibitory effect was more significant on the growth of AGS cells and A+M extracts had a higher inhibitory effect compared to MeOH extracts. The treatments of hexane, 85% aq. methanol, butanol and water fractions significantly inhibited the growth of both cancer cells (p<0.05). Among fractions, hexane and 85% aq. methanol fractions showed higher inhibitory effects. In order to determine the protective effect on $H_2O_2$-induced oxidative stress, DCHF-DA (dichlorodihydrofluorescin diacetate) assay was conducted. The A+M and MeOH extracts of dried beet appeared to significantly reduce the levels of intracellular (ROS) with dose responses. Among the fractions, 85% methanol fractions showed a higher protective effect on production of lipid peroxides. These results indicate that the intake of dried beet may improve oxidative stress in cell and reduce cancer risk.

Beneficial Effect of Hyangsayangwi-tang on the Cisplatin-Induced Gastrointestinal Dysfunctions in Rats (향사양위탕이 시스플라틴 유발 랫트의 위장관 기능 장애에 미치는 영향)

  • Seo, Eun-Hee;Kim, Seong-Tae;Bae, Na-Young;Choi, Ae-Ryun
    • Journal of Sasang Constitutional Medicine
    • /
    • v.25 no.4
    • /
    • pp.343-358
    • /
    • 2013
  • Objectives This study aimed to observe the effect of Hyangsayangwi-tang on the cisplatin-induced gastrointestinal dysfunctions in rats. Methods Four groups(each of 8 rats per group) were used in this study. Saline and distilled water treated control rats are Intact vehicle control group. Delayed gatrointestinal mortility was induced by intraperitoneal treatment of cisplatin 2mg/kg, once a week for 5 weeks(Cisplatin control group). Hyangsayangwi-tang aqueous extracts(HY) were orally administered in a volume of 5ml/kg, once a day for 14 days from 4th ciplatin treatmernt(HY group). Ondansetron 1mg/kg was subcutaneously treated, in a volume of 1ml/kg, as same as HY(ondansetron group). We measured the body weights, intestinal charcoal transit ratio, fecal parameters, fundus MDA, GSH contents and SOD, CAT activities, TPH and MAO activities, pyloric gastrin and serotonin contents with their immunoraective cells, colonic serotonin-immunoreactive cells, the histopathology of pylorus, fundus mucosa and colon. Results and Conclusions (1) The body weight gains, the small intestinal charcoal transfer rates, the fecal parameters(numbers, weights and water contents) were increased in HY, ondansetron group. (2) The inhibit of fundus antioxidant defense systems by cisplatin were decreased in HY, ondansetron group. (3) The pyloric TPH activities were increased and the pyloric MAO activities were decreased in HY group. (4) The pyloric gastric contents and the gastrin-immunoreactive cells were increased in HY group. And the pyloric serotonin contents and the pyloric and colonic serotonin-immunoreactive cells were decreased in HY group. (5) The pyloru atrophic changes and the gastric surface erosive damage regions by cisplatin were favorably inhibited by treatment of HY. HY, a representative Soeumin prescription improve GI dysfunctions and constipation retarded by cisplatin through modulations of GI enterochromaffin cells, serotonin and gastrin-producing cells and antioxidative systems. Especially HY showed the highest favorable effects more than those of ondansetron.

Immunological Aspects of Contemporary Exercise (운동과 면역반응에 대한 고찰)

  • Kwak, Yi-Sub;Kim, Chul-Woo;Paik, Young-Ho
    • Journal of Life Science
    • /
    • v.17 no.8 s.88
    • /
    • pp.1166-1171
    • /
    • 2007
  • Exercise is the strongest stress to which the body is ever exposed. The body responds to this stress through a set of physiological changes in its metabolic, hormonal, and immunological systems. In this study, responses of the immune system to the long-term aerobic and anaerobic exercises have been investigated. Regular moderate exercise is associated with a reduced incidence of infection compared with a sedentary groups. Aerobic training increases the heart rate and enhances the body's intake of oxygen long enough to benefit the condition of the body. In recent years, the importance of exercise in everyday life has been rapidly increasing. Moderate exercise appears to stimulate the immune system. And also, Exercise elicits an increase in the numbers of circulating lymphocytes and lymphocyte subsets (including NK cells) which is followed by a decrease in the numbers of cells during recovery from exercise. However, prolonged bouts of strenuous exercise cause a temporary depression of various aspects of immune functions (e.g. lymphocyte proliferation, monocyte antigen presentation, open window periods, exercise induced asthma, exercise induced anaphylaxis) that usually lasts 2-24 hr after exercise depending on the intensity and duration of the exercise bout. Exercise-induced bronchoconstriction (EIB) was defined as a decrease of at least 15% in pre exercise forced expiratory volume in one second at any time point after exercise. This includes elevation of cortisol and cathecholamines in plasma. On the other hand, highly trained athletes exhibit a chronic mild hypercortisolism at baseline that maybe an adaptive change to chronic exercise. And, Consuming carbohydrate during prolonged strenuous exercise attenuates rises in stress hormones and appears to limit the degree of exercise-induced immune depression. Recent evidence suggests that antioxidant vitamin supplementation may also reduce exercise stress and impairment of leukocyte functions.