• Title/Summary/Keyword: antioxidant defense

Search Result 358, Processing Time 0.024 seconds

Evaluation of Some Biochemical Parameters and Brain Oxidative Stress in Experimental Rats Exposed Chronically to Silver Nitrate and the Protective Role of Vitamin E and Selenium

  • Gueroui, Mouna;Kechrid, Zine
    • Toxicological Research
    • /
    • v.32 no.4
    • /
    • pp.301-309
    • /
    • 2016
  • Due to undesirable hazardous interactions with biological systems, this investigation was undertaken to evaluate the effect of chronic exposure to silver on certain biochemical and some oxidative stress parameters with histopathological examination of brain, as well as the possible protective role of selenium and/or vitamin E as nutritional supplements. Thirty six male rats were divided into six groups of six each: the first group used as a control group. Group II given both vitamin E (400 mg/kg) of diet and selenium (Se) (1 mg/L) in their drinking water. Group III given silver as silver nitrate ($AgNO_3$) (20 mg/L). Group IV given vitamin E and $AgNO_3$. Group V given both $AgNO_3$ and selenium. Group VI given $AgNO_3$, vitamin E and Se. The animals were in the same exposure conditions for 3 months. According to the results which have been obtained; there was an increase in serum lactate dehydrogenase (LDH), lipase activities and cholesterol level, a decrease in serum total protein, calcium and alkaline phosphatase (ALP) activity in Ag-intoxicated rats. Moreover, the findings showed that $Ag^+$ ions affected antioxidant defense system by decreasing superoxide dismutase (SOD) activity and increasing vitamin E concentration with a high level of malondialdehyde (MDA) in brain tissue. The histological examination also exhibited some nervous tissue alterations including hemorrhage and cytoplasm vacuolization. However, the co-administration of selenium and/or vitamin E ameliorated the biochemical parameters and restored the histological alterations. In conclusion, this study indicated that silver could cause harmful effects in animal body and these effects can be more toxic in high concentrations or prolonged time exposure to this metal. However, selenium and vitamin E act as powerful antioxidants which may exercise adverse effect against the toxicity of this metal.

Activation of JNK and c-Jun Is Involved in Glucose Oxidase-Mediated Cell Death of Human Lymphoma Cells

  • Son, Young-Ok;Jang, Yong-Suk;Shi, Xianglin;Lee, Jeong-Chae
    • Molecules and Cells
    • /
    • v.28 no.6
    • /
    • pp.545-551
    • /
    • 2009
  • Mitogen-activated protein kinases (MAPK) affect the activation of activator protein-1 (AP-1), which plays an important role in regulating a range of cellular processes. However, the roles of these signaling factors on hydrogen peroxide ($H_2O_2$)-induced cell death are unclear. This study examined the effects of $H_2O_2$ on the activation of MAPK and AP-1 by exposing the cells to $H_2O_2$ generated by either glucose oxidase or a bolus addition. Exposing BJAB or Jurkat cells to $H_2O_2$ affected the activities of MAPK differently according to the method of $H_2O_2$ exposure. $H_2O_2$ increased the AP-1-DNA binding activity in these cells, where continuously generated $H_2O_2$ led to an increase in mainly the c-Fos, FosB and c-Jun proteins. The c-Jun-$NH_2$-terminal kinase (JNK)-mediated activation of c-Jun was shown to be related to the $H_2O_2$-induced cell death. However, the suppression of $H_2O_2$-induced oxidative stress by either JNK inhibitor or c-Jun specific antisense transfection was temporary in the cells exposed to glucose oxidase but not to a bolus $H_2O_2$. This was associated with the disruption of death signaling according to the severe and prolonged depletion of reduced glutathione. Overall, these results suggest that $H_2O_2$ may decide differently the mode of cell death by affecting the intracellular redox state of thiol-containing antioxidants, and this depends more closely on the duration exposed to $H_2O_2$ than the concentration of this agent.

Prognostic Significance of Altered Blood and Tissue Glutathione Levels in Head and Neck Squamous Cell Carcinoma Cases

  • Khan, Sami Ullah;Mahjabeen, Ishrat;Malik, Faraz Arshad;Kayani, Mahmood Akhtar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7603-7609
    • /
    • 2014
  • Glutathione is a thiol compound that plays an important role in the antioxidant defense system of the cell and its deficiency leads to an increased susceptibility to oxidative stress and, thus, progression of many disease states including head and neck cancer. In the present study, alterations of glutathione levels were investigated in study cohort of 500 samples (cohort 1 containing 200 head and neck cancer blood samples along with 200 healthy controls and cohort II with 50 head and neck squamous cell carcinoma tissue samples along with 50 control tissues) by high performance liquid chromatography. The results indicated that mean blood glutathione levels were significantly reduced in head and neck cancer patients (p<0.001) compared to respective controls. In contrast, the levels of glutathione total (p<0.05) and glutathione reduced (p<0.05) were significantly elevated in head and neck squamous cell carcinoma tissues compared to the adjacent cancer-free control tissues. In addition to this, pearson correlation performed to correlate different tissue glutathione levels (GSH) with clinical/pathological parameters demonstrated a significant negative correlation between pT-stage and GSH level ($r=-0.263^{**}$; p<0.01), C-stage and GSH level ($r=-0.335^{**}$; p<0.01), grade and GSH ($r=-0.329^{**}$; p<0.01) and grade versus redox index ($r=-0.213^{**}$; p<0.01) in HNSCC tissues. Our study suggests that dysregulation of glutathione levels in head and neck cancer has the potential to predict metastasis, and may serve as a prognostic marker.

Effects of Vespae Nidus on Peroxynitrite Production and Protein Expression of Proinflammatory Mediators (노봉방(露蜂房)이 t-butylhydroxyperoxide에 의한 Peroxynitrite 생성과 염증성 단백질 발현에 미치는 영향)

  • Jang, Jae-Shik;Jeong, Ji-Cheon;Shin, Hyeon-Cheol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.6
    • /
    • pp.1499-1505
    • /
    • 2007
  • Peroxynitrite ($ONOO^-$) is a reactive oxidant formed from superoxide anion radical (${\cdot}\;O_2-$) and nitric oxide (NO), which can oxidize cellular components such as essential protein, non-protein thiols, DNA, low-density lipoproteins and membrane phospholipids. ${\cdot}\;O_2-$ and $ONOO^-$ have contributed to the pathogenesis of diseases such as stroke, heart disease, Alzheimer's disease and atherosclerosis. Because of damaging effects of ${\cdot}\;O_2-$ and $ONOO^-$ oxidants, Vespae Nidus, which has been known to strengthen the kidneys to preserve the vital energy. was tested as a potential specific scavenger of those oxidants. In this study, the viability of Vespae Nidus (1, 10, 50 g/ml) to scavenge ${\cdot}\;O_2-$, NO, $ONOO^-$ and so to protect cells against tert-butylhydroxyperoxide (t-BHP) induced cell death was tested. The levels of ${\cdot}\;O_2-$ and $ONOO^-$ were detected by staining with DCFH-DA and DHR 123, respectively. Protein expression levels of COX-2, iNOS and $NF{-\kappa}B$ were assayed by western blot. Vespae Nidus blocked t-BHP-induced cell death in a dose-dependent fashion. Vespae Nidus inhibited t-BHP-induced production of ${\cdot}\;O_2-$, NO and $ONOO^-$ in YPEN cells. The lipid peroxide level was increased and glutathione level was decreased in lipopolysaccharide (LPS)-treated ICR mouse, whereas the ones in the Vespae Nidus-administered group were regulated beneficially. Vespae Nidus inhibited the expression of COX-2, iNOS and NF-κB (p65 and p50) genes in LPS-treated ICR mouse. The present study suggests that Vespae Nidus is a powerful antioxidant and promotes cellular defense activity by scavenging the toxic oxidants such as ${\cdot}\;O_2-$ and $ONOO^-$.

Antioxidative Action of Corni Fructus Aqueous Extract on Kidneys of Diabetic Mice

  • Kim, Hye-Jeong;Kim, Bae-Hwan;Kim, Young-Chul
    • Toxicological Research
    • /
    • v.27 no.1
    • /
    • pp.37-41
    • /
    • 2011
  • This study investigated the antioxidative action of Corni Fructus aqueous extract on kidneys of diabetic mice. The electron donating abilities of Corni Fructus aqueous extract and its antioxidant activities (XO, SOD, CAT, GST, eNOS) in kidneys of C57BL/6 or db/db mice were evaluated. For in vivo study, seven week-old male mice were divided into normal control group (NC, C57BL/6 mice), diabetic control group (DC, db/db mice) and Corni Fructus (500 mg/kg/day for 8 weeks) treated diabetic group (DCF, db/db mice). The electron donating abilities of Corni Fructus aqueous extract exhibited 7%, 24.4%, and 42.7% at concentrations of 100, 500, and $1000\;{\mu}g/ml$, respectively. The activity of XO in the DCF group was significantly lower than the DC group by 35% (p < 0.05). The SOD activity was significantly higher in the DCF group than the DC group by 26% (p < 0.05). The activities of CAT and GST were lowered in the DCF group than the DC group by 26% (p < 0.05) and 7.6%, respectively. The mRNA expression of eNOS in kidneys was lower in the DCF group than the DC group by 24%. These results indicate that Corni Fructus reduced oxidation stress as evidenced by the restoration of the enzymatic antioxidative defense system in renal tissues of db/db mice. It is suggested that these antioxidative actions of Corni Fructus on renal tissues in db/db mice could contribute to its renoprotective effects on diabetic nephropathy.

Analgesic Effect of Blue Honeysuckle on the Rat Menopausal Pain, Primary Dysmenorrhea (Estradiol benzoate 및 oxytocin 투여로 유발된 랫트 생리통 모델에서 댕댕이나무 열매 농축동결건조 분말의 진통 및 생리장애 개선 효과)

  • Joo, Si-Chan;Lee, Sang-nam;Choi, Seong-Hun;Park, Ji-Ha
    • The Korea Journal of Herbology
    • /
    • v.35 no.6
    • /
    • pp.55-68
    • /
    • 2020
  • Objectives : We observed the possibilities that blue honeysuckle has favorable analgesic or refinement effects on the Primary dysmenorrhea (PD) in rats. Methods : Estradiol benzoate and oxytocin were used to induce the PD rat model. And Blue honeysuckle concentration lyophilized powders (BH) 500, 250 and 125 mg/kg and 500 mg/kg of Lonicerae Flos aqueous extract lyophilized powders (LF) were orally administered, once a day for 10 days at 30 min after each estradiol benzoate treatment. Then the changes on the body weights and gains during experimental periods, abdominal writhing response for analgesic activities, uterine weights, uterus lipid peroxidation, antioxidant defense system - glutathione contents, superoxide dismutase and catalase activities, NF-κB and COX-2 mRNA expressions were monitored with uterus histopathology including immunohistochemistry for tumor necrosis factor (TNF)-α and inducible nitric oxide synthase (iNOS).. Results : Inflammatory and oxidative stress mediated PD signs were favorably and dose-dependently inhibited by 10 days continuous oral administration of three different dosages of BH - 500, 250 and 125 mg/kg as comparable to those of indomethacin(IND) 5 mg/kg treated rats in BH 500 mg/kg administered PD rats, and similar to those of LF 500 mg/kg in BH 125 mg/kg, at least in a condition of the present PD rat model. Conclusions : The results suggest that BH has favorable analgesic and refinement activities on the estradiol benzoate and oxytocin treatment-induced PD signs through anti-inflammatory and antioxidative potentials.

Role of Glutathione Redox System on the T-2 Toxin Tolerance of Pheasant (Phasianus colchicus)

  • Fernye, Csaba;Ancsin, Zsolt;Bocsai, Andrea;Balogh, Krisztian;Mezes, Miklos;Erdelyi, Marta
    • Toxicological Research
    • /
    • v.34 no.3
    • /
    • pp.249-257
    • /
    • 2018
  • The purpose of the present study was to evaluate the effects of different dietary concentrations of T-2 toxin on blood plasma protein content, lipid peroxidation and glutathione redox system of pheasant (Phasianus colchicus). A total of 320 one-day-old female pheasants were randomly assigned to four treatment groups fed with a diet contaminated with different concentrations of T-2 toxin (control, 4 mg/kg, 8 mg/kg and 16 mg/kg). Birds were sacrificed at early (12, 24 and 72 hr) and late (1, 2 and 3 weeks) stages of the experiment to demonstrate the effect of T-2 toxin on lipid peroxidation and glutathione redox status in different tissues. Feed refusal and impaired growth were observed with dose dependent manner. Lipid-peroxidation was not induced in the liver, while the glutathione redox system was activated partly in the liver, but primarily in the blood plasma. Glutathione peroxidase activity has changed parallel with reduced glutathione concentration in all tissues. Based on our results, pheasants seem to have higher tolerance to T-2 toxin than other avian species, and glutathione redox system might contribute in some extent to this higher tolerance, in particular against free-radical mediated oxidative damage of tissues, such as liver.

Protective role of paeoniflorin from hydrogen peroxide-mediated oxidative damage in C6 glial cells

  • Lee, Ah Young;Nam, Mi Na;Kim, Hyun Young;Cho, Eun Ju
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.2
    • /
    • pp.137-145
    • /
    • 2020
  • Oxidative stress is one of the pathogenic mechanisms of various neurodegenerative diseases, such as Alzheimer's disease. Neuroglia, the most abundant cells in the brain, is thought to play an important role in the antioxidant defense system and neuronal metabolic support against neurotoxicity and oxidative stress. We investigated the protective effect of paeoniflorin (PF) against oxidative stress in C6 glial cells. Exposure of C6 glial cells to hydrogen peroxide (H2O2, 500 μM) significantly decreased cell viability and increased amounts of lactate dehydrogenase (LDH) release, indicating H2O2-induced cellular damage. However, treatment with PF significantly attenuated H2O2-induced cell death as shown by increased cell survival and decreased LDH release. The H2O2-stimulated reactive oxygen species production was also suppressed, and it may be associated with improvement of superoxide dismutase activity by treatment with PF. In addition, an increase in ratio of Bcl-2/Bax protein expression was observed after treatment with PF. In particular, the down-stream of the apoptotic signaling pathway was inhibited in the presence of PF, mostly by reduction of cleaved-poly ADP ribose polymerase, cleaved caspase-3, and -9 protein expression. Furthermore, H2O2-induced phosphorylation of c-Jun N-terminal kinase and extracellular signal-regulated kinase 1/2 was attenuated by treatment with PF. Taken together, neuroprotective effect of PF against oxidative stress probably result from the regulation of apoptotic pathway in C6 glial cells. In conclusion, our findings suggest that PF may be a potent therapeutic agent for neurodegenerative disorders.

Recent Findings on the Mechanism of Cisplatin-Induced Renal Cytotoxicity and Therapeutic Potential of Natural Compounds

  • Lee, Dahae;Choi, Sungyoul;Yamabe, Noriko;Kim, Ki Hyun;Kang, Ki Sung
    • Natural Product Sciences
    • /
    • v.26 no.1
    • /
    • pp.28-49
    • /
    • 2020
  • The efficacy and side effects associated with anticancer drugs have attracted an extensive research focus. Onconephrology is an evolving field of nephrology that deals with the study of kidney diseases in cancer patients. Most renal diseases in cancer patients are unique, and management of renal disease can be challenging especially in the presence of continuing use of the nephrotoxic drugs. Cisplatin is one of the most important chemotherapeutic agents used in the treatment of various malignancies, such as head, neck, ovarian, and cervical cancers. The major limitation in the clinical use of cisplatin is its tendency to induce adverse effects, such as nephrotoxicity. Recently, plant-derived phytochemicals have emerged as novel agents providing protection against cisplatin-induced renal cytotoxicity. Owing to the diversity of phytochemicals, they cover a wide spectrum of therapeutic indications in cancer and inflammation and have been a productive source of lead compounds for the development of novel medications. Of these agents, the effectiveness of triterpenoids, isolated from various medicinal plants, against cisplatin-induced renal cytotoxicity has been reported most frequently compared to other phytochemicals. Triterpenes are one of the most numerous and diverse groups of plant natural products. Triterpenes ameliorate cisplatin-induced renal damage through multiple pathways by inhibiting reactive oxygen species, inflammation, down-regulation of the MAPK, apoptosis, and NF-κB signaling pathways and upregulation of Nrf2-mediated antioxidant defense mechanisms. Here, we reviewed recent findings on the natural compounds with protective potential in cisplatin-induced renal cytotoxicity, provided an overview of the protective effects and mechanisms that have been identified to date, and discussed strategies to reduce renal cytotoxicity induced by anticancer drugs.

Hepatic Detoxification and Antioxidant Activity in Sea-urchin Roe and Ethanol Extract of Roe (성게 부위별 및 그 추출물의 간 해독과 항산화 활성 효과)

  • Lee, Seung-Joo;Ha, Wang-Hyun;Choi, Hye-Jin;Cho, Soon-Yeong;Choi, Jong-Won
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.5
    • /
    • pp.428-436
    • /
    • 2010
  • Sea-urchins (Anthocidaris crassispina) are widely distributed in the East Sea of Korea. The aim of this study was to evaluate the hepatoprotective effects of sea-urchin roe on bromobenzene (BB)-induced liver damage in rats. The antioxidative and detoxifying properties of sea-urchin roe in BB-poisoned rat liver was examined by chemical analysis of serum aminotransferase (AST, ALT), glutathione S-transferase (GST), $\gamma$-glutamylcystein synthetase, glutathione reductase, epoxide hydrolase, amino-N-demethylase (AD), aniline hydrolase (AH) enzyme activity, as well as lipid peroxide and glutathione contents. Sea-urchin roe inhibited the increase of serum AST, ALT enzyme activity. Increasing lipid peroxide contents and AD and AH activities were significantly decreased in ethanol extract of sea-urchin roe. GST, $\gamma$-glutamylcystein synthetase, glutathione reductase and epoxide hydrolase enzyme activities increased in sea-urchin roe-fed group, compared with the BB-treated group. These results suggest that sea-urchin roe facilitates recovery from liver damage by enhancing antioxidative defense mechanisms and hepatic detoxication metabolism.