• Title/Summary/Keyword: antioxidant agents

Search Result 385, Processing Time 0.023 seconds

Treatment with Rutin - A Therapeutic Strategy for Neutrophil-Mediated Inflammatory and Autoimmune Diseases - Anti-inflammatory Effects of Rutin on Neutrophils -

  • Nikfarjam, Bahareh Abd;Adineh, Mohtaram;Hajiali, Farid;Nassiri-Asl, Marjan
    • Journal of Pharmacopuncture
    • /
    • v.20 no.1
    • /
    • pp.52-56
    • /
    • 2017
  • Objectives: Neutrophils represent the front line of human defense against infections. Immediately after stimulation, neutrophilic enzymes are activated and produce toxic mediators such as pro-inflammatory cytokines, nitric oxide (NO) and myeloperoxidase (MPO). These mediators can be toxic not only to infectious agents but also to host tissues. Because flavonoids exhibit antioxidant and anti-inflammatory effects, they are subjects of interest for pharmacological modulation of inflammation. In the present study, the effects of rutin on stimulus-induced NO and tumor necrosis factor $(TNF)-{\alpha}$ productions and MPO activity in human neutrophils were investigated. Methods: Human peripheral blood neutrophils were isolated using Ficoll-Hypaque density gradient centrifugation coupled with dextran T500 sedimentation. The cell preparations containing > 98% granulocytes were determined by morphological examination through Giemsa staining. Neutrophils were cultured in complete Roswell Park Memorial Institute (RPMI) medium, pre-incubated with or without rutin ($25{\mu}M$) for 45 minutes, and stimulated with phorbol 12-myristate 13-acetate (PMA). Then, the $TNF-{\alpha}$, NO and MPO productions were analyzed using enzyme-linked immunosorbent assay (ELISA), Griess Reagent, and MPO assay kits, respectively. Also, the viability of human neutrophils was assessed using tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), and neutrophils were treated with various concentrations of rutin ($1-100{\mu}M$), after which MTT was appended and incubated at $37^{\circ}C$ for 4 hour. Results: Rutin at concentrations up to $100{\mu}M$ did not affect neutrophil viability during the 4-hour incubation period. Rutin significantly decreased the NO and $TNF-{\alpha}$ productions in human peripheral blood neutrophils compared to PMA-control cells (P < 0.001). Also, MPO activity was significantly reduced by rutin (P < 0.001). Conclusion: In this in vitro study, rutin had an anti-inflammatory effect due to its inhibiting NO and $TNF-{\alpha}$ productions, as well as MPO activity, in activated human neutrophils. Treatment with rutin may be considered as a therapeutic strategy for neutrophil-mediated inflammatory/autoimmune diseases.

Growth Inhibitory Effect of Extracts of Propolis on Epithelial Ovarian Cancer Cells (상피성 난소암 세포에서 프로폴리스 추출물의 세포 증식 저해 효과)

  • Yang, Ga Ram;Yoon, Kyung Mi;Oh, Hyun Ho;Kim, Min Sung;Hwang, Tae Ho;An, Won Gun
    • Journal of Life Science
    • /
    • v.27 no.7
    • /
    • pp.834-839
    • /
    • 2017
  • Propolis is a natural product collected from plants by honey bees product used extensively in traditional medicine for its antioxidant, anti-inflammatory, immunomodulatory and anti-cancer effects. Propolis exhibits a broad spectrum of biological activities because it is a complex mixture of natural substances. Ovarian cancer is the second most common newly diagnosed cancer from all cancers among women in Korea and the leading cause of death from gynecological malignancies. While most ovarian cancer patients initially respond to surgical debulking and chemotherapy, patients later succumb to the disease. Thus, there is an urgent need to test novel therapeutic agents to counteract the high mortality rate associated with ovarian cancer. In this study, we investigated the anti-cancer properties and the active mechanism of Australian propolis in human epithelial ovarian cancer A2780 cells. Our data revealed that propolis showed a cytotoxic activity in a dose-dependent manner. Flow cytometric analysis for cell cycle arrest and apoptosis using propidium iodide staning and annexin V-FITC indicated that propolis could induce cycle arrest in the G0/G1 phase and apoptosis in a dose-dependent manner on human epithelial ovarian cancer cells. These results suggest that the Australian propolis is potential alternative agent on ovarian cancer prevention and treatment.

Antioxidants of Pine Needle Extracts According to Preparation Method (제조방법별 솔잎추출물의 항산화성 검토)

  • Kim, Soo-Min;Kim, Eun-Ju;Cho, Young-Suk;Sung, Sam-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.527-534
    • /
    • 1999
  • This study was carried out to investigate the effects of pine needle extracts on lipid oxidation and free radical reaction in iron sources reacted with active oxygen species. The results were summarized as follow; the catalytic effects of active oxygen on lipid oxidation in oil emulsion tended to be showed $OH,\;H_2O_2\;and\;KO_2$ in order. At the same time, pine needle extracts itself were tended to be showed a little catalytic effects. Active oxygen scavenging ability of pine needle extracts didn't show, but pine needle extracts played role as a strong chelating agents to bind iron ion if $Fe^{2+}$ ion exist in oil emulsion. The content of $Fe^{2+}$ ion and total iron in CPNP were higher than those of HPNP and FPN. The content of ascorbic acid of FPN showed the highest (87.77 ppm) among several pine needle extracts. Electron donating ability of HPNP and CPNP were 81% and 78%, respectively, which were showed higher content than those of FPN. The SOD-like activity of HPNP showed 44.30%, compared to other pine needle extracts which means the most strong antioxidant reaction. The nitrite scavenging effects were tended to be different, depending on pH value as pH value was increased. Especially, they didn't show the nitrite scavenging effect in pH6.0.

  • PDF

Interaction with Polyphenols and Antibiotics (폴리페놀 화합물과 항생제의 상호작용)

  • Cho, Ji Jong;Kim, Hye Soo;Kim, Chul Hwan;Cho, Soo Jeong
    • Journal of Life Science
    • /
    • v.27 no.4
    • /
    • pp.476-481
    • /
    • 2017
  • Polyphenols are secondary metabolites produced by higher plants and have been used as antiallergic, anticancer, antihypertensive, antiinflammatory, antimicrobial and antioxidant agents. They are generally divided into flavonoids and non-flavonoids. The antimicrobial activity of flavonoids are stronger than that of non-flavonoids. The skeleton structures of flavonoids possessing antimicrobial activity are chalcone, flavan-3-ol (catechin), flavanone, flavone, flavonol and proanthocyanidin. The flavonols are shown antibacterial activity against several gram-positive bacteria (Actinomyces naeslundii, Lactobacillus acidophilus and Staphylococcus aureus) and gram-negative bacteria (Fusobacterium nucleatum, Porphyromonas gingivalis, Prevotella melaninogenica and Prevotella oralis). Among of non-flavonoids, caffeic acids, ferulic acids and gallic acids showed antimicrobial activity against gram-positive (Listeria monocytogenes and S. aureus) and gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). These are found to be more efficient against the E. coli, L. monocytogenes, P. aeruginosa and S. aureus than antibiotics such as gentamicin and streptomycin. The kaempferol and quercetin showed synergistic effect with ciprofloxacin and rifampicin against S. aureus and methicillin resistant S. aureus (MRSA). Epigallocatechin gallate (EGCG) acts synergistically with various ${\beta}-lactam$ antibiotics against MRSA. In particular, the epicatechin, epigallocatechin (EGC), EGCG and gallocatechin gallate from Korean green tea has antibacterial activity against MRSA clinical isolates and the combination of tea polyphenols and oxacillin was synergistic for all the clinical MRSA isolates.

Anti-inflammatory Activities of Methanolic Extracts from Different Rose Cultivars (품종별 장미꽃 메탄올 추출물의 항염증 효과)

  • Lee, Seon-Mi;Li, Lin;Sung, Jeehye;Yang, Jinwoo;Kim, Younghwa;Jeong, Heon Sang;Lee, Junsoo
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.4
    • /
    • pp.551-557
    • /
    • 2015
  • The genus Rosa (Rosaceae) is an abundant source of phenolics and is traditionally used as a food supplement and as herbal medicine. Various plant phenolics are known to have anticancer, antioxidant, and anti-inflammatory properties. In this study, we investigated the anti-inflammatory effects of rose methanolic extracts (RMEs) from four different rose cultivars (Macarena, Onnuri, Oklahoma, and Colorado) in lipopolysaccharide (LPS)-activated RAW 264.7 cells. Our results demonstrated that pretreatment of REMs ($500{\mu}g/mL$) significantly reduced NO production by suppressing iNOS protein expression in LPS-stimulated cells. Anti-inflammatory effects by RMEs were observed in the following order: Oklahoma > Colorado > Onnuri > Macarena. Consistent with this finding, RMEs inhibited the translocation of $NF-{\kappa}B$ from the cytosol to the nucleus via the suppression of $I{\kappa}B{\alpha}$ phosphorylation and also inhibited LPS-stimulated $NF-{\kappa}B$ transcriptional activity. These findings suggest that RMEs exert anti-inflammatory actions and help to elucidate the mechanisms underlying the potential therapeutic values of RMEs. Therefore, RMEs could be regarded as a potential source of natural anti-inflammatory agents.

Antioxidation, Antimicrobial and Antithrombosis Activities of Aged Black Garlic (Allium sativum L.) (흑마늘의 항산화, 항균 및 항혈전 활성)

  • Jung, In-Chang;Sohn, Ho-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.3
    • /
    • pp.285-292
    • /
    • 2014
  • In the course of study for development of functional food ingredients from aged black garlic (ABG), heat-treated ripe bulbs of Allium sativum L., the water extracts from raw-garlic (RG) and ABG, and the subsequent organic solvent fractions of ABG were prepared, and their antioxidant, antimicrobial, and antithrombosis activities were compared. The extraction yield of ABG was 4-folds higher than that of RG, and the contents of total polyphenol, total flavonoid, total sugar and reducing sugar in the ABG extract were 4-folds, 1.56-folds, 3.36-folds and 6.75-folds higher than those of the RG extract, respectively. In antioxidation activity assay, the extract of ABG showed minor scavenging activity against DPPH anion, but revealed strong scavenging activity against ABTS cation and nitrite. Especially, the ethylacetate fraction from the ABG extract demonstrated stronger antioxidation activity than the RG extract and other fractions. Although the antimicrobial and antithrombosis activities of the RG extract did not appear in the ABG extract, the ethylacetate fraction from the ABG extract had antibacterial activity against Staphylococcus aureus and Bacillus subtilis, and strong antithrombosis activity via the inhibition of prothrombin, blood coagulation factors and platelet aggregation. All extracts and fractions did not show any hemolytic activity against human red blood cells up to 5 mg/ml. Our results suggest that the ethylacetate fraction of ABG could be applicable to the development of functional food ingredients for antithrombosis agents.

The Effects of Anti-Thrombotic Activities and Cardiovascular Improvement of Fermented Garlic Extracts (발효마늘 추출물의 항혈전 및 심혈관개선 효과)

  • Kim, Hyun Kyoung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.567-572
    • /
    • 2020
  • The purpose of this study was to investigate the effects of Anti-Thrombotic Activities and Cardiovascular Improvement of Fermented Garlic Extracts. The incidence of cardiovascular diseases (CVDs) is increasing rapidly in developed countries, with CVDs now representing the leading cause of morbidity and mortality. Natural products and ethnomedicines have been shown to reduce the risk of CVDs. Garlic is a medicinal plant used throughout the world for its anti-inflammatory, antioxidant, and antiplatelet activities. We hypothesized that fermented preparations of these products may possess stronger antiplatelet effects than the non-fermented forms owing to the increased bioavailability of the bioactive compounds produced during fermentation. Therefore, we compared these compounds via in vitro and ex vivo platelet aggregation assays by using standard light transmission aggregometry and ex vivo granule secretions from rat platelets. We found that fermented preparations exerted more potent and significant inhibition of platelet aggregation both in vitro and ex vivo. Likewise, ATP release from dense granules of platelets was also significantly inhibited in fermented preparation-treated rat platelets compared to that in non-fermented preparation-treated ones. We concluded that fermented preparations exerted more potent effects on platelet function both in vitro and ex vivo, possibly as a result of the increased bioavailability of active compounds produced during fermentation. We therefore suggest that fermented products may be potent therapeutics against platelet-related CVDs and can be used as antiplatelet and antithrombotic agents.

The Effects of Anti-Inflammatory Activities and Active Fractions Analysis of Ethanol Extract from Red Rose Petals (붉은 장미꽃잎 에탄올 추출물의 활성 분획물 분석 및 항염증 활성 효과)

  • Kim, Hyun Kyoung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.543-551
    • /
    • 2020
  • Red rose petals are usually disposed but they are an abundant source of phenolics and traditionally used as food supplement and as herbal medicine. Of the Various phenolics, they are known to have anticancer, antioxidant, and anti-inflammatory properties. In this study, we investigated the anti-inflammatory effects of red rose ethanolic extracts(GRP) on lipopolysaccharide (LPS)-activated RAW 264.7 cells. The results demonstrated that pretreatment of GRP(500㎍/mL) significantly reduced NO production by suppressing iNOS protein expression in LPS-stimulated cells. Anti-inflammatory effects byred rose petal were observed in the following. Red rose petal inhibited the translocation of NF-κB from the cytosol to the nucleus via the suppression of IκB-α phosphorylation and also inhibited LPS-stimulated NF-κB transcriptional activity. These findings suggest that red rose petal exert anti-inflammatory actions and help to elucidate the mechanisms underlying the potential therapeutic values of red rose petal. Therefore, red rose petal could be regarded as a potential source of natural anti-inflammatory agents.

Enhancement of the Cosmeceutical Activity by Nano-encapsulation of Thiamine Di-lauryl Sulfate (TDS) with antimicrobial efficacy (항균 효능이 있는 비타민 B1 유도체(Thiamine Dilauryl Sulfate:TDS)의 나노입자화를 통한 기능성 향장 활성 증진)

  • Seo, Yong Chang;No, Ra Hwan;Kwon, Hee-Seok;Lee, Hyeon Yong
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.39 no.3
    • /
    • pp.205-213
    • /
    • 2013
  • This study was to improve cosmetical activity of thiamine di-lauryl sulfate (TDS) by encapsulation of nanoparticle with lecithin. Results showed that most of the nanoparticles containing the TDS were well formed in round shape with below 150 ~ 200 nm diameter as well as they were fairly stable in various pH ranges by measuring zeta potentials. The nanoparticles of TDS resulted in 85% cell viability of human normal fibroblast cells (CCD-986sk) when added at the highest concentration (1.0 mg/mL). The nanoparticles of Acer mono sap showed highest free radical scavengering effect as 88.1% in adding sample (1.0 mg/mL), compared to TDS solution of non-encapsulation (81.6%). The nanoparticles of TDS reduced the expression of MMP-1 on UV-irradiated CCD-986sk cells down to as 41.4%. The TDS solution and nanoparticles showed significant anti-microbial activities agaionst the salmonella typhimurium and listeria monocytogenes at 5 and 6 days as compared with control. Anti-microbial activities of TDS nanoparticles were similar to positive control. These results indicated that TDS nanoparticles may be a source for functional cosmetic agents capable of improving cosmetical activity such as antioxidant, whitening, and anti-wrinkling effects and can be further developed as natural preservative in cosmetics.

Antioxidant Activity and Identification of Lunasin Peptide as an Anticancer Peptide on Growing Period and Parts in Pepper (생육시기 및 부위별 고추의 항산화력 및 항암 Lunasin peptide의 동정)

  • Kwon Ki Soo;Park Jae Ho;Kim Dae Seop;Jeong Jin Boo;Sim Young Eun;Kim Mi Suk;Lee Hee Kyung;Chung Gyu Young;Jeong Hyung Jin
    • Journal of Life Science
    • /
    • v.15 no.4 s.71
    • /
    • pp.528-535
    • /
    • 2005
  • The non-enzymatic anti-oxidants and lunasin peptide from the extracts of the pepper were examined in order to utilize the discovery in natural products as cancer chemopreventive agents. The DPPH (1,1-diphenyl-2-picryl-hydrazyl) free radical scavenging activity on the fruit parts of the pepper was higher than that of the seed, but the difference was low. The Inhibition activity of xanthine/ xanthine oxidase in extracts of the seed was higher than that of the fruit and that of the seed on 20 days after flowering was the highest at the growing period. These were identified as fatty acids and phenolic compounds such as 1-eicosanol, palmitic acid, linoleic acid, linolenic acid and benzonitrile. The contents of fatty acids and phenolic compounds increased according to the time passing at the growing period. Peroxidase (POD) activity of the fruit at middle stage was high than that of other growing stages and that of the seed was the highest at later growing period. Though superoxide dismutase (SOD) activities in fruit were hish by passage of Slowing stage, the activity in seed was low. Lunasin was searched from seeds of the peppers by coomassie blue staining and western blot among them and we just found lunasin peptide from extracted protein of the pepper by western blot. In addition, we observed the contents of lunasin after flowering and confirmed to appear the lunasin at 35 days after flowering. We confirmed that lunasin is complex protein of maturing seeds. 100nM lunasin peptide in pepper showed inhibition effect on colony formation in $2\~12$ cells.