• Title/Summary/Keyword: antimicrobial membrane

Search Result 194, Processing Time 0.022 seconds

The Novel Biological Action of Antimicrobial Peptides via Apoptosis Induction

  • Cho, Jaeyong;Hwang, In-Sok;Choi, Hyemin;Hwang, Ji Hong;Hwang, Jae-Sam;Lee, Dong Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.11
    • /
    • pp.1457-1466
    • /
    • 2012
  • Antimicrobial peptides (AMPs) exert antimicrobial activity against Gram-positive and Gram-negative bacteria, fungi, and viruses by various mechanisms. AMPs commonly possess particular characteristics by harboring cationic and amphipathic structures and binding to cell membranes, resulting in the leakage of essential cell contents by forming pores or disturbing lipid organization. These membrane disruptive mechanisms of AMPs are possible to explain according to the various structure forming pores in the membrane. Some AMPs inhibit DNA and/or RNA synthesis as well as apoptosis induction by reactive oxygen species (ROS) accumulation and mitochondrial dysfunction. Specifically, mitochondria play a major role in the apoptotic pathway. During apoptosis induced by AMPs, cells undergo cytochrome c release, caspase activation, phosphatidylserine externalization, plasma or mitochondrial membrane depolarization, DNA and nuclei damage, cell shrinkage, apoptotic body formation, and membrane blebbing. Even AMPs, which have been reported to exert membrane-active mechanisms, induce apoptosis in yeast. These phenomena were also discovered in tumor cells treated with AMPs. The apoptosis mechanism of AMPs is available for various therapeutics such as antibiotics for antibiotic-resistant pathogens that resist to the membrane active mechanism, and antitumor agents with selectivity to tumor cells.

Antimicrobial Activities of Korean Medicinal Herb Extracts for Preserving Greenhouse Fresh Produce (시설채소산물의 선도유지를 위한 한국산 약용식물추출물의 항균특성)

  • 정순경;이숙지
    • Food Science and Preservation
    • /
    • v.5 no.1
    • /
    • pp.13-21
    • /
    • 1998
  • Korean medicinal herb extracts(KMHE) were applied to the preservation of greenhouse produce in order to prove their effectiveness. KMHE showed remarkable antimicrobial effects against Bacillus cereus, Peudomonas syringae, and Corynebacterium xerosis causing the postharvest decay of greenhouse produce. Among KMHE the extracts of Rheum palmatum L. and Coptis chinensis Franch most obviously inhibited the growth of microorganims causing the Postharvest decay of greenhouse produce, which destroyed to undetectable levels when treated with more than 500ppm of KMHE. The activities of KMHE were stable in the wide spectrum of pH and temperature. Direct visualization of microbial cells by using both transmission electron microscope and scanning electron microscope showed microbial cell membrane the function of which was destroyed by treating with the dilute solutions of KMHE. This change of cellular membrane permeability could be identified in the experiment that O-nitrophenyl-$\beta$-D-galactopyranoside(ONPG), the artificial substrate of $\beta$-galactosidase, was hydrolyzed in the presence of KMHE, indicating that the membrane was perturbed by KMHE.

  • PDF

Properties of Antimicrobial Membrane Using an N-Halamine Material (N-Halamine을 이용한 항균 멤브레인의 특성)

  • Baek, Ji-Yoon;Kim, Sam-Soo;Lee, Jae-Woong
    • Textile Coloration and Finishing
    • /
    • v.21 no.4
    • /
    • pp.57-62
    • /
    • 2009
  • N-Halamines are compounds which have covalent bonding between nitrogen and halogen. N-Halamine materials possess strong antimicrobial properties against wide spectrum of bacteria. The aim of this study is to prepare N-halamine membranes using m-aramid and poly(vinyl alcohol) (PVA). Surface characteristics using scanning electron microscope (SEM), pore size distribution, liquid permeability and mean pore size were measured to confirm feasibility as membrane. The results indicated that increased PYA portion up to 15% in the m-aramid/PVA blend resulted in improved pore size distribution, liquid permeability as well as mean pore size. Furthermore, antibacterial efficacy of the membranes after chlorination was confirmed and the results showed that bacteria in water were inactivated.

Analogs of Periplanetasin-4 Exhibit Deteriorated Membrane-Targeted Action

  • Lee, Heejeong;Hwang, Jae Sam;Lee, Dong Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.382-390
    • /
    • 2020
  • Periplanetasin-4 is an antimicrobial peptide with 13 amino acids identified in cockroaches. It has been reported to induce fungal cell death by apoptosis and membrane-targeted action. Analogs were designed by substituting arginine residues to modify the electrostatic and hydrophobic interactions accordingly and explore the effect of periplanetasin-4 through the increase of net charge and the decrease of hydrophobicity. The analogs showed lower activity than periplanetasin-4 against gram-positive and gram-negative bacteria. Similar to periplanetasin-4, the analogs exhibited slight hemolytic activity against human erythrocytes. Membrane studies, including determination of changes in membrane potential and permeability, and fluidity assays, revealed that the analogs disrupt less membrane integrity compared to periplanetasin-4. Likewise, when the analogs were treated to the artificial membrane model, the passage of molecules bigger than FD4 was difficult. In conclusion, arginine substitution could not maintain the membrane disruption ability of periplanetasin-4. The results indicated that the attenuation of hydrophobic interactions with the plasma membrane caused a reduction in the accumulation of the analogs on the membrane before the formation of electrostatic interactions. Our findings will assist in the further development of antimicrobial peptides for clinical use.

Effects of C-Terminal Residues of 12-Mer Peptides on Antibacterial Efficacy and Mechanism

  • Son, Kkabi;Kim, Jieun;Jang, Mihee;Chauhan, Anil Kumar;Kim, Yangmee
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.11
    • /
    • pp.1707-1716
    • /
    • 2019
  • The development of new antimicrobial agents is essential for the effective treatment of diseases such as sepsis. We previously developed a new short peptide, Pap12-6, using the 12 N-terminal residues of papiliocin, which showed potent and effective antimicrobial activity against multidrug-resistant Gram-negative bacteria. Here, we investigated the antimicrobial mechanism of Pap12-6 and a newly designed peptide, Pap12-7, in which the 12th Trp residue of Pap12-6 was replaced with Val to develop a potent peptide with high bacterial selectivity and a different antibacterial mechanism. Both peptides showed high antimicrobial activity against Gram-negative bacteria, including multidrug-resistant Gram-negative bacteria. In addition, the two peptides showed similar anti-inflammatory activity against lipopolysaccharide-stimulated RAW 264.7 cells, but Pap12-7 showed very low toxicities against sheep red blood cells and mammalian cells compared to that showed by Pap12-6. A calcein dye leakage assay, membrane depolarization, and confocal microscopy observations revealed that the two peptides with one single amino acid change have different mechanisms of antibacterial action: Pap12-6 directly targets the bacterial cell membrane, whereas Pap12-7 appears to penetrate the bacterial cell membrane and exert its activities in the cell. The therapeutic efficacy of Pap12-7 was further examined in a mouse model of sepsis, which increased the survival rate of septic mice. For the first time, we showed that both peptides showed anti-septic activity by reducing the infiltration of neutrophils and the production of inflammatory factors. Overall, these results indicate Pap12-7 as a novel non-toxic peptide with potent antibacterial and anti-septic activities via penetrating the cell membrane.

Screening and Purification of an Antimicrobial Peptide from the Gill of the Manila Clam Ruditapes philippinarum (바지락(Ruditapes philippinarum) 아가미로부터 항균 펩타이드의 탐색 및 정제)

  • Seo, Jung-Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.2
    • /
    • pp.137-145
    • /
    • 2016
  • This study screened the biological activity of an acidified gill extract of the Manila clam Ruditapes philippinarum including antimicrobial, hemolytic, membrane permeabilization, and DNA-binding activity, and purified the antimicrobial material. The acidified gill extract showed potent antimicrobial activity against Bacillus subtilis and Escherichia coli without significant hemolytic activity, but showed no membrane permeabilization or DNA-binding ability. An antimicrobial material was purified from the acidified gill extract using C18 reversed-phase and cation-exchange high-performance liquid chromatography (HPLC). Treatment of the purified material with trypsin completely abolished all of the antibacterial activity against Bacillus subtilis, suggesting that the purified material is a proteinaceous antibiotic. The molecular weight of the purified material was 2571.9 Da, but no primary structural information was obtained due to N-terminal blocking. A future study should confirm the primary structure. Our results suggest that the Manila clam gill contains proteinaceous antibiotics that have a role in first-line defense. This information could be used to better understand the Manila clam innate immune system.

Antimicrobial Cyclic Peptides for Plant Disease Control

  • Lee, Dong Wan;Kim, Beom Seok
    • The Plant Pathology Journal
    • /
    • v.31 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Antimicrobial cyclic peptides derived from microbes bind stably with target sites, have a tolerance to hydrolysis by proteases, and a favorable degradability under field conditions, which make them an attractive proposition for use as agricultural fungicides. Antimicrobial cyclic peptides are classified according to the types of bonds within the ring structure; homodetic, heterodetic, and complex cyclic peptides, which in turn reflect diverse physicochemical features. Most antimicrobial cyclic peptides affect the integrity of the cell envelope. This is achieved through direct interaction with the cell membrane or disturbance of the cell wall and membrane component biosynthesis such as chitin, glucan, and sphingolipid. These are specific and selective targets providing reliable activity and safety for non-target organisms. Synthetic cyclic peptides produced through combinatorial chemistry offer an alternative approach to develop antimicrobials for agricultural uses. Those synthesized so far have been studied for antibacterial activity, however, the recent advancements in powerful technologies now promise to provide novel antimicrobial cyclic peptides that are yet to be discovered from natural resources.

Antimicrobial activity of rifampicin released from the rifampicin-containing-polyurethane immobilized on the surface with the polyallyamine membrane using photochemical reaction (광화학반응으로 polyallyamine막이 표면에 고정화된 리팜피신-함유 폴리우레탄으로부터 유리되는 리팜피신의 항균 활성에 관한 연구)

  • Jeon, S.M.;Lee, K.B.;Kim, H.J.;Kim, M.N.;Min, B.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.31-34
    • /
    • 1997
  • A new method for the prevention of foreign body-associated infections by controlled release of antibiotic was developed. The polyurethane (PU) matrix containing rifampicin was immobilized with hydrophilic photoreactive polyallylamine (PPA) containing azidophenyl groups. The rifampicin release characteristics and the long-lasting antimicrobial activities of the new material was compared with rifampicin-containing PU matrix without PPA membrane. The release rate of antibiotic from rifampicin-containing PU with PPA membrane significantly decreased as the thickness of PPA membrane was increased. The PPA-immobilized rifampicin-containing PU discs immersed in the PBS for 47 days had an efficient antimicrobial activity against both S. aureus and S. epidermidis.

  • PDF

Identification of Antimicrobial Peptide Hexamers against Oral Pathogens through Rapid Screening of a Synthetic Combinatorial Peptide Library

  • Song, Je-Seon;Cho, Kyung Joo;Kim, Joungmok;Kim, Jeong Hee
    • International Journal of Oral Biology
    • /
    • v.39 no.4
    • /
    • pp.169-176
    • /
    • 2014
  • A positional scanning synthetic peptide combinatorial library (PS-SCL) was screened in order to identify antimicrobial peptides against the cariogenic oral bacteria, Streptococcus mutans. Activity against Streptococcus gordonii and Aggregatibacter actinomycetemcomitans was also examined. The library was comprised of six sub-libraries with the format $O_{(1-6)}XXXXX-NH_2$, where O represents one of 19 amino acids (excluding cysteine) and X represents equimolar mixture of these. Each sub-library was tested for antimicrobial activity against S. mutans and evaluated for antimicrobial activity against S. gordonii and A. actinomycetemcomitans. The effect of peptides was observed using transmission electron microscopy (TEM). Two semi-mixture peptides, RXXXXN-$NH_2$ (pep-1) and WXXXXN-$NH_2$ (pep-2), and one positioned peptide, RRRWRN-$NH_2$ (pep-3), were identified. Pep-1 and pep-2 showed significant antimicrobial activity against Gram positive bacteria (S. mutans and S. gordonii), but not against Gram negative bacteria (A. actinomycetemcomitans). However, pep-3 showed very low antimicrobial activity against all three bacteria. Pep-3 did not form an amphiphilic ${\alpha}$-helix, which is a required structure for most antimicrobial peptides. Pep-1 and pep-2 were able to disrupt the membrane of S. mutans. Small libraries of biochemically-constrained peptides can be used to generate antimicrobial peptides against S. mutans and other oral microbes. Peptides derived from such libraries may be candidate antimicrobial agents for the treatment of oral microorganisms.

Preparation, characterization and comparison of antibacterial property of polyethersulfone composite membrane containing zerovalent iron or magnetite nanoparticles

  • Dizge, Nadir;Ozay, Yasin;Simsek, U. Bulut;Gulsen, H. Elif;Akarsu, Ceyhun;Turabik, Meral;Unyayar, Ali;Ocakoglu, Kasim
    • Membrane and Water Treatment
    • /
    • v.8 no.1
    • /
    • pp.51-71
    • /
    • 2017
  • Antimicrobial polyethersulfone ultrafiltration membranes containing zerovalent iron ($Fe^0$) and magnetite ($Fe_3O_4$) nanoparticles were synthesized via phase inversion method using polyethersulfone (PES) as membrane material and nano-iron as nanoparticle materials. Zerovalent iron nanoparticles (nZVI) were prepared by the reduction of iron ions with borohydride applying an inert atmosphere by using $N_2$ gases. The magnetite nanoparticles (nMag) were prepared via co-precipitation method by adding a base to an aqueous mixture of $Fe^{3+}$ and $Fe^{2+}$ salts. The synthesized nanoparticles were characterized by scanning electron microscopy, X-ray powder diffraction, and dynamic light scattering analysis. Moreover, the properties of the synthesized membranes were characterized by scanning electron microscopy energy dispersive X-ray spectroscopy and atomic force microscopy. The PES membranes containing the nZVI or nMag were examined for antimicrobial characteristics. Moreover, amount of iron run away from the PES composite membranes during the dead-end filtration were tested. The results showed that the permeation flux of the composite membranes was higher than the pristine PES membrane. The membranes containing nano-iron showed good antibacterial activity against gram-negative bacteria (Escherichia coli). The composite membranes can be successfully used for the domestic wastewater filtration to reduce membrane biofouling.