• 제목/요약/키워드: antigen-specific T cells

검색결과 171건 처리시간 0.025초

Use of Cell-Penetrating Peptides in Dendritic Cell-Based Vaccination

  • Sangho Lim;Ja-Hyun Koo;Je-Min Choi
    • IMMUNE NETWORK
    • /
    • 제16권1호
    • /
    • pp.33-43
    • /
    • 2016
  • Cell-penetrating peptides (CPPs) are short amino acids that have been widely used to deliver macromolecules such as proteins, peptides, DNA, or RNA, to control cellular behavior for therapeutic purposes. CPPs have been used to treat immunological diseases through the delivery of immune modulatory molecules in vivo. Their intracellular delivery efficiency is highly synergistic with the cellular characteristics of the dendritic cells (DCs), which actively uptake foreign antigens. DC-based vaccines are primarily generated by pulsing DCs ex vivo with various immunomodulatory antigens. CPP conjugation to antigens would increase DC uptake as well as antigen processing and presentation on both MHC class II and MHC class I molecules, leading to antigen specific CD4+ and CD8+ T cell responses. CPP-antigen based DC vaccination is considered a promising tool for cancer immunotherapy due to the enhanced CTL response. In this review, we discuss the various applications of CPPs in immune modulation and DC vaccination, and highlight the advantages and limitations of the current CPP-based DC vaccination.

Bispecific Antibody-Bound T Cells as a Novel Anticancer Immunotherapy

  • Cho, Jaewon;Tae, Nara;Ahn, Jae-Hee;Chang, Sun-Young;Ko, Hyun-Jeong;Kim, Dae Hee
    • Biomolecules & Therapeutics
    • /
    • 제30권5호
    • /
    • pp.418-426
    • /
    • 2022
  • Chimeric antigen receptor T (CAR-T) cell therapy is one of the promising anticancer treatments. It shows a high overall response rate with complete response to blood cancer. However, there is a limitation to solid tumor treatment. Additionally, this currently approved therapy exhibits side effects such as cytokine release syndrome and neurotoxicity. Alternatively, bispecific antibody is an innovative therapeutic tool that simultaneously engages specific immune cells to disease-related target cells. Since programmed death ligand 1 (PD-L1) is an immune checkpoint molecule highly expressed in some cancer cells, in the current study, we generated αCD3xαPD-L1 bispecific antibody (BiTE) which can engage T cells to PD-L1+ cancer cells. We observed that the BiTE-bound OT-1 T cells effectively killed cancer cells in vitro and in vivo. They substantially increased the recruitment of effector memory CD8+ T cells having CD8+CD44+CD62Llow phenotype in tumor. Interestingly, we also observed that BiTE-bound polyclonal T cells showed highly efficacious tumor killing activity in vivo in comparison with the direct intravenous treatment of bispecific antibody, suggesting that PD-L1-directed migration and engagement of activated T cells might increase cancer cell killing. Additionally, BiTE-bound CAR-T cells which targets human Her-2/neu exhibited enhanced killing effect on Her-2-expressing cancer cells in vivo, suggesting that this could be a novel therapeutic regimen. Collectively, our results suggested that engaging activated T cells with cancer cells using αCD3xαPD-L1 BiTE could be an innovative next generation anticancer therapy which exerts simultaneous inhibitory functions on PD-L1 as well as increasing the infiltration of activated T cells having effector memory phenotype in tumor site.

상이한 치주병원균의 연속적 인공면역에 대한 세포성 및 체액성 면역반응에 대한 동물실험적 연구 (Cellular and Humoral Immune Responses to Sequential Periodontopathic Bacterial Immunization in Animal Model)

  • 전수경;김성조;최점일
    • Journal of Periodontal and Implant Science
    • /
    • 제30권3호
    • /
    • pp.687-700
    • /
    • 2000
  • Antigen-specific T cell clones were obtained from mice immunized with Fusobacterium nucleatum ATCC 10953(F .nucleatum) and/or Porphyromonas gingi valis 381(P. gingivalis). 10 Balb/c mice per group were immunized with F. nucleatum followed by P. gingivalis, or with P. gingivalis alone by intraperitoneal injection of viable microorganisms. Spleen T cells were isolated and stimulated in vitro with viable P. gingivalis cells to establish P. gingivalisspecific T cell clones. T cell phenotypes and cytokine profiles were determined along with T cell responsiveness to F .nucleatum or P. gingivalis. Serum IgG antibody titers to F. nucleatum or P. gingivalis were also determined by ELISA. All the T cell clones derived from mice immunized with F. nucleatum followed by P. gingivalis demonstrated Th2 subsets, while those from mice immunized with P. gingivalis alone demonstrated Th1 subsets based on the flow cytometric analysis and cytokine profiles, All T cells clones from both groups were cross-reactive to both P. gingivalis and F. nucleatum antigens. Phenotypes of T cell clones were all positive for CD4. Mean post-immune serum IgG antibody levels to F. nucleatum or P . gingivalis were significantly higher than the pre-immune levels(p <0.01, respectively). There were no significant differences in the antibody titers between the two groups. It was concluded that P. gingivalis-specific T cells initially primed by cross-reactive F. nucleatum antigens were polarized to Th2 subsets, while T cells stimulated with P. gingivalis alone maintained the profile of Th1 subset.

  • PDF

단기간 면역억제제와 수지상 세포주의 전처치를 이용한 복합조직 동종이식 (Rat Hindlimb Allotransplantation with Short-term Immune Suppressants and Dendritic Cell Pretreatment)

  • 은석찬;백롱민
    • Archives of Reconstructive Microsurgery
    • /
    • 제21권1호
    • /
    • pp.34-40
    • /
    • 2012
  • Prevention of acute rejection in composite tissue allotransplantation without continuous immunosuppression lacks reports in worldwide literature. Recently dendritic cells (DC) gained considerble attention as antigen presenting cells that are also capable of immunologic tolerance induction. This study assesses the effect of alloantigen-pulsed dendritic cells in induction of survival in a rat hindlimb allograft. We performed hindlimb allotransplantation between donor Sprague-Dawley and recipient Fischer344 rats. Recipient derived dendritic cells were harvested from rat whole blood and cultured with anti-inflammatory cytokine IL-10. Then donor-specific alloantigen pulsed dendritic cells were reinjected into subcutaneous tissue before limb transplantation. Groups: I) untreated (n=6), II) DC injected (n=6), III) Immunosuppressant (FK-506, 2 mg/Kg) injected (n=6), IV) DC and immunouppressant injected (n=6). Graft appearance challenges were assessed postoperatively. Observation of graft appearance, H-E staning, immunohistochemical (IHC) study, and confocal immunofluoreiscece were performed postoperatively. Donor antigen pulsed host dendritic cell combined with short-term immunosuppression showed minimal mononuclear cell infiltration, regulator T cell presence, and could prolong limb allograft survival.

  • PDF

CD4+CD25+ Regulatory T Cells Selectively Diminish Systemic Autoreactivity in Arthritic K/BxN Mice

  • Kang, Sang Mee;Jang, Eunkyeong;Paik, Doo-Jin;Jang, Young-Ju;Youn, Jeehee
    • Molecules and Cells
    • /
    • 제25권1호
    • /
    • pp.64-69
    • /
    • 2008
  • Although the arthritis symptoms observed in the K/BxN model have been shown to be dependent on the functions of T and B cells specific to the self antigen glucose-6-phosphate isomerase, less is known about the in vivo roles of $CD4^{+}CD25^{+}$ regulatory T($T_{reg}$) cells in the pathology of K/BxN mice. We determined the quantitative and functional characteristics of the $T_{reg}$ cells in K/BxN mice. These mice contained a higher percentage of $Foxp3^+\;T_{reg}$ cells among the $CD4^+$ T cells than their BxN littermates. These $T_{reg}$ cells were anergic and efficiently suppressed the proliferation of $na\ddot{i}ve$ $CD4^+$ T cells and cytokine production by effector $CD4^+$ T cells in vitro. Antibody-mediated depletion of $CD25^+$ cells caused K/BxN mice to develop multi-organ inflammation and autoantibody production, while the symptoms of arthritis were not affected. These results demonstrate that despite the inability of the $T_{reg}$ cells to suppress arthritis development, they play a critical role protecting the arthritic mice from systemic expansion of autoimmunity.

Delivery of Chicken Egg Ovalbumin to Dendritic Cells by Listeriolysin O-Secreting Vegetative Bacillus subtilis

  • Roeske, Katarzyna;Stachowiak, Radoslaw;Jagielski, Tomasz;Kaminski, Michal;Bielecki, Jacek
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권1호
    • /
    • pp.122-135
    • /
    • 2018
  • Listeriolysin O (LLO), one of the most immunogenic proteins of Listeria monocytogenes and its main virulence factor, mediates bacterial escape from the phagosome of the infected cell. Thus, its expression in a nonpathogenic bacterial host may enable effective delivery of heterologous antigens to the host cell cytosol and lead to their processing predominantly through the cytosolic MHC class I presentation pathway. The aim of this project was to characterize the delivery of a model antigen, chicken egg ovalbumin (OVA), to the cytosol of dendritic cells by recombinant Bacillus subtilis vegetative cells expressing LLO. Our work indicated that LLO produced by non-sporulating vegetative bacteria was able to support OVA epitope presentation by MHC I molecules on the surface of antigen presenting cells and consequently influence OVA-specific cytotoxic T cell activation. Additionally, it was proven that the genetic context of the epitope sequence is of great importance, as only the native full-sequence OVA fused to the N-terminal fragment of LLO was sufficient for effective epitope delivery and activation of $CD8^+$ lymphocytes. These results demonstrate the necessity for further verification of the fusion antigen potency of enhancing the MHC I presentation, and they prove that LLO-producing B. subtilis may represent a novel and attractive candidate for a vaccine vector.

Cytotoxic T Lymphocytes Elicited by Dendritic Cell-Targeted Delivery of Human Papillomavirus Type-16 E6/E7 Fusion Gene Exert Lethal Effects on CaSki Cells

  • Wu, Xiang-Mei;Liu, Xing;Jiao, Qing-Fang;Fu, Shao-Yue;Bu, You-Quan;Song, Fang-Zhou;Yi, Fa-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권6호
    • /
    • pp.2447-2451
    • /
    • 2014
  • Human papillomavirus (HPV) is the primary etiologic agent of cervical cancer. Consideration of safety and non human leukocyte antigen restriction, protein vaccine has become the most likely form of HPV therapeutic vaccine, although none have so far been reported as effective. Since tumor cells consistently express the two proteins E6 and E7, most therapeutic vaccines target one or both of them. In this study, we fabricated DC vaccines by transducing replication-defective recombinant adenoviruses expressing E6/E7 fusion gene of HPV-16, to investigate the lethal effects of specific cytotoxic T lymphocytes (CTL) against CaSki cells in vitro. Mouse immature dendritic cells (DC) were generated from bone marrow, and transfected with pAd-E6/E7 to prepare a DC vaccine and to induce specific CTL. The surface expression of CD40, CD68, MHC II and CD11c was assessed by flow cytometry (FCM), and the lethal effects of CTL against CaSki cells were determined by DAPI, FCM and CCK-8 methods. Immature mouse DC was successfully transfected by pAd-E6/E7 in vitro, and the transfecting efficiency was 40%-50%. A DC vaccine was successfully prepared and was used to induce specific CTL. Experimental results showed that the percentage of apoptosis and killing rate of CaSki cells were significantly increased by coculturing with the specific CTL (p <0.05). These results illustrated that a DC vaccine modified by HPV-16 E6/E7 gene can induce apoptosis of CaSki cells by inducing CTL, which may be used as a new strategy for biological treatment of cervical cancer.

Comprehensive Analysis of Epstein-Barr Virus LMP2A-Specific CD8+ and CD4+ T Cell Responses Restricted to Each HLA Class I and II Allotype Within an Individual

  • Hyeong-A Jo;Seung-Joo Hyun;You-Seok Hyun;Yong-Hun Lee;Sun-Mi Kim;In-Cheol Baek ;Hyun-Jung Sohn;Tai-Gyu Kim
    • IMMUNE NETWORK
    • /
    • 제23권2호
    • /
    • pp.17.1-17.16
    • /
    • 2023
  • Latent membrane protein 2A (LMP2A), a latent Ag commonly expressed in Epstein-Barr virus (EBV)-infected host cells, is a target for adoptive T cell therapy in EBV-associated malignancies. To define whether individual human leukocyte antigen (HLA) allotypes are used preferentially in EBV-specific T lymphocyte responses, LMP2A-specific CD8+ and CD4+ T cell responses in 50 healthy donors were analyzed by ELISPOT assay using artificial Ag-presenting cells expressing a single allotype. CD8+ T cell responses were significantly higher than CD4+ T cell responses. CD8+ T cell responses were ranked from highest to lowest in the order HLA-A, HLA-B, and HLA-C loci, and CD4+ T cell responses were ranked in the order HLA-DR, HLA-DP, and HLA-DQ loci. Among the 32 HLA class I and 56 HLA class II allotypes, 6 HLA-A, 7 HLA-B, 5 HLA-C, 10 HLA-DR, 2 HLA-DQ, and 2 HLA-DP allotypes showed T cell responses higher than 50 spot-forming cells (SFCs)/5×105 CD8+ or CD4+ T cells. Twenty-nine donors (58%) showed a high T cell response to at least one allotype of HLA class I or class II, and 4 donors (8%) had a high response to both HLA class I and class II allotypes. Interestingly, we observed an inverse correlation between the proportion of LMP2A-specific T cell responses and the frequency of HLA class I and II allotypes. These data demonstrate the allele dominance of LMP2A-specific T cell responses among HLA allotypes and their intra-individual dominance in response to only a few allotypes in an individual, which may provide useful information for genetic, pathogenic, and immunotherapeutic approaches to EBV-associated diseases.

CEA 발현 마우스 종양모델에서 Cyclophosphamide와 수지상세포 백신의 병합치료에 의한 상승적인 항종양 효과 (Synergistic Anti-Tumor Effect by the Combination of Cyclophosphamide and Dendritic Cell Vaccination in Murine Tumor Model that CEA Expressing)

  • 박미영
    • 대한임상검사과학회지
    • /
    • 제54권1호
    • /
    • pp.38-48
    • /
    • 2022
  • Carcinoembryonic antigen (CEA)는 다양한 종양에서 발현되는 자가 항원으로 면역치료에서 강력한 표지 인자이며 면역치료를 위한 표적 종양항원으로 널리 알려져 있다. 그러나 수지상세포 단독 치료는 동물모델에서 종양의 발생을 억제하는 데 효과가 있지만 이미 확립된 종양을 제거하는 데는 한계가 있다. 본 연구에서는 항종양 면역 효과를 증가시키기 위하여 화학치료제인 cyclophosphamide (CYP)와 종양 특이 면역치료법인 수지상세포 백신의 병합치료 효과를 CEA를 발현하는 마우스 종양 모델에서 검증하였다. 종양세포 주입 후 2일 소종양군과 10일 대종양군에서 CYP의 항종양 효과를 비교한 결과, 소종양군에서는 100 mg/kg에서 뚜렷한 종양 성장의 억제 효과가 관찰되었지만 대종양군에서는 약한 억제 효과가 관찰되어 본 연구에서는 대종양군을 병합치료의 적합한 모델로 설정하였다. CYP 와 수지상세포 백신의 병합치료(화학면역치료) 시 종양항원 특이 면역반응이 증가되었을 뿐만 아니라 상승적인 항종양 효과가 나타났다. 또한 CYP 치료에서 나타나는 체중 감소 및 조절 T세포와 골수유래 억제세포의 증가에 의한 면역억제는 화학면역치료에 의해 개선되었다. 항원 특이 면역치료를 병합한 화학면역치료가 화학치료의 부작용을 감소시키고 항종양 효과를 증가시킬 수 있는 치료 전략이 될 수 있을 것이다.

류마티스 관절염 병인에서 제2형 콜라겐에 대한 면역반응의 역할 (Role of Immune Response to Type II Collagen in the Pathogenesis of Rheumatoid Arthritis)

  • 정영옥;홍승재;김호연
    • IMMUNE NETWORK
    • /
    • 제3권1호
    • /
    • pp.1-7
    • /
    • 2003
  • Type II collagen (CII), major component of hyaline cartilage, has been considered as an auto-antigen in rheumatoid arthritis (RA). However, the clinical and biological significances with regard to the CII autoimmunity need to be clarified in human RA. The presence of antibodies to CII has been identified in sera, synovial fluid, and cartilage of patients with RA. In our study, the increased titer of IgG anti-CII in sera was well correlated with C-reactive protein, suggesting that this antibody may reflect the inflammatory status of RA. The titer of anti-CII antibodies (anti-CII Abs) tended to be higher in early stages of diseases. In our extending study, among 997 patients with RA, 269 (27.0%) were positive for circulatory IgG antibody to CII, those levels were fluctuated over time. It is hard to assess the significant amount of T cell responses to CII and CII (255~274) in RA. By using a sensitive method of antigen specific mixed lymphocyte culture, we can detect the presence of CII-reactive T cells in peripheral blood mononuclear cells of RA patients. Sixty seven (46.9%) of 143 patients showed positive CII reactive T cell responses to CII or CII (255~274). The frequencies of CII reactive T cells were more prominent in inflamed synovial fluid (SF) than in peripheral blood. These T cells could be clonally expanded after consecutive stimulation of CII with feeding of autologous irradiated antigen presenting cells (APC). Moreover, the production of Th1-related cytokine, such as IFN-${\gamma}$, was strongly up-regulated by CII reactive T cells. These data suggest that T cells responding to CII, which are probably presenting the IFN-${\gamma}$ producing cells, may play an important role in the perpetuation of inflammatory process in RA. To evaluate the effector function of CII reactive T cells, we investigated the effect of CII reactive T cells and fibroblasts-like synoviocytes (FLS) interaction on the production of pro-inflammatory cytokines. When the CII reactive T cells were co-cultured with FLS, the production of IL-15 and TNF-${\alpha}$ from FLS were significantly increased (2 to 3 fold increase) and this increase was clearly presented in accord to the expansion of CII reactive T cells. In addition, the production of IFN-${\gamma}$ and IL-17, T cell derived cytokines, were also increased by the co-incubation of CII reactive T cells with FLS. We also examined the impact of CII reactive T cells on chemokines production. When FLS were co-cultured with CII stimulated T cells, the production of IL-8, MCP-1, and MIP-1${\alpha}$ were significantly enhanced. The increased production of these chemokines was strongly correlated with increase the frequency of CII reactive T cells. Conclusively, immune response to CII was frequently found in RA. Activated T cells in response to CII contributed to increase the production of proinflammatory cytokines and chemokines, which were critical for inflammatory responses in RA. The interaction of CII-reactive T cells with FLS further augmented this phenomenon. Taken together, our recent studies have suggested that autoimmunity to CII could play a crucial role not only in the initiation but amplification/perpetuation of inflammatory process in human RA.