• Title/Summary/Keyword: antifungal protein

Search Result 129, Processing Time 0.026 seconds

Activation of Pathogenesis-related Genes by the Rhizobacterium, Bacillus sp. JS, Which Induces Systemic Resistance in Tobacco Plants

  • Kim, Ji-Seong;Lee, Jeongeun;Lee, Chan-Hui;Woo, Su Young;Kang, Hoduck;Seo, Sang-Gyu;Kim, Sun-Hyung
    • The Plant Pathology Journal
    • /
    • v.31 no.2
    • /
    • pp.195-201
    • /
    • 2015
  • Plant growth promoting rhizobacteria (PGPR) are known to confer disease resistance to plants. Bacillus sp. JS demonstrated antifungal activities against five fungal pathogens in in vitro assays. To verify whether the volatiles of Bacillus sp. JS confer disease resistance, tobacco leaves pre-treated with the volatiles were damaged by the fungal pathogen, Rhizoctonia solani and oomycete Phytophthora nicotianae. Pre-treated tobacco leaves had smaller lesion than the control plant leaves. In pathogenesis-related (PR) gene expression analysis, volatiles of Bacillus sp. JS caused the up-regulation of PR-2 encoding ${\beta}$-1,3-glucanase and acidic PR-3 encoding chitinase. Expression of acidic PR-4 encoding chitinase and acidic PR-9 encoding peroxidase increased gradually after exposure of the volatiles to Bacillus sp. JS. Basic PR-14 encoding lipid transfer protein was also increased. However, PR-1 genes, as markers of salicylic acid (SA) induced resistance, were not expressed. These results suggested that the volatiles of Bacillus sp. JS confer disease resistance against fungal and oomycete pathogens through PR genes expression.

Isolation and Selection of Functional Microbes for Eco-friendly Turfgrass Management in Golf Course from Livestock Manure Compost (친환경 잔디관리를 위한 가축분퇴비 중 기능성미생물의 분리 및 선발)

  • Jeong, Je-Yong;Kim, Young-Sun;Cho, Sung-Hyun;Lee, Geung-Joo
    • Weed & Turfgrass Science
    • /
    • v.6 no.2
    • /
    • pp.157-164
    • /
    • 2017
  • Functional microorganisms decompose various organic matter by enzyme activity and suppress plant disease caused by pathogen. This study was conducted to isolate and select functional microorganisms with protein or carbohydrate degradation activities and antagonistic activity against turfgrass fungal pathogens for eco-friendly turfgrass management in golf course from compost containing livestock manure of poultry or swine. Totally 68 isolates collected from livestock manure compost strains were isolated and tested for their activities of amylase, protease and lipase and antagonistic activities against Rhizoctonia solani AG2-2, R. solani AG1-1, and Sclerotinia homoeocarpa. Among the isolates, 34 strains were selected as functional microbes showing higher activities of amylase and protease. Three isolates of ASC-14, ASC-18, and ASC-35 among the 34 strains were selected as antifungal bacterial strains repressing the above 3 turfgrass fungal pathogens. Analysis results of 16s rRNA gene sequence and phylogenic cluster indicated that ASC-14 and ASC-18 belonged to Bacillus amyloliquefaciens, while ASC-35 was B. subtilis, respectively.

Comparative Analysis of a Putative HLH Transcription Factor Responsible for Conidiation in Aspergillus Species

  • Abdo Elgabbar, Mohammed A.;Jun, Sang-Cheol;Kim, Jong-Hwa;Jahng, Kwang-Yeop;Han, Dong Min;Han, Kap-Hoon
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.11a
    • /
    • pp.28-28
    • /
    • 2015
  • Asexual reproduction or conidiation in aspergilli is a primary mean to produce their progenies that is environmentally and genetically controlled tightly. Previously, intensive researches in the model fungus Aspergillus nidulans disclosed some genes playing important roles in asexual and sexual development. Among them, one gene encoding a putative helix-loop-helix (HLH) transcription factor, named ndrA, has been isolated and characterized as a downstream regulator of developmental master regulator NsdD. By using comparative genome search of A. niduans NdrA protein, its orthologues have been identified in A. fumigatus and A. flavus, respectively (AfudrnA and AfldrnA). Deletion of the ndrA genes in both Aspergillus species made them unable to produce the conidia yet abundant production of sclerotia in A. flavus. Complementation of ndrA deletion strains by intact ndrA ORFs has restored the conidiation as in the control strains. In A. fumigatus, ndrA deletion also resulted in loss of conidiation phenotype. Northern analyses showed that the ndrA genes in both Aspergillus species are highly expressed at the early stage of the conidiation. Interestingly, the ndrA genes were found to be necessary for the proper expression of brlA genes. Antifungal sensitivity test revealed that the ndrA genes might be responsible for the sensitivity or resistance to some antifungal agents. However, ndrA deletion did not greatly influence the growth in both strains. And the A. flavus ndrA gene did not affect the aflatoxin production. Taken together, ndrA genes in Aspergillus species could be an important positive regulator of conidiation under the regulation of the nsdD gene yet upstream of the brlA gene.

  • PDF

Inhibitory Effect Against Akt by Cyclic Dipeptides Isolated from Bacillus sp.

  • Hong, Sung-Won;Moon, Byoung-Ho;Yong, Yeon-Joong;Shin, Soon-Young;Lee, Young-Han;Lim, Yoong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.682-685
    • /
    • 2008
  • Among thirteen strains of the genus Bacillus isolated from Shrimp-jeotkal in our laboratory, a strain BA34 showing good antifungal activity against Phytophthora infestans in a previous experiment was tested for the inhibitory effect against Akt, protein kinase B. Since Akt is known to play an important role in controlling apoptosis, its inhibitors can be used as potential apoptosis-inducing agents in the treatment of cancer. Two active compounds were isolated and their structures were determined. They have similar structures, despite showing different inhibitory effects. In order to elucidate the reasons for these different effects, three-dimensional studies were carried out.

Inhibition of p65 Nuclear Translocation by Radicicol, Heat Shock Protein Inhibitor

  • Kim, Sang-Gyu;Jeon, Young-Jin;Lee, Seog-Ki
    • Toxicological Research
    • /
    • v.21 no.4
    • /
    • pp.285-290
    • /
    • 2005
  • We demonstrate that radicicol, a macrocyclic antifungal antibiotic originally isolated from Monosporium bonorden, inhibits LPS-induced expression of iNOS gene in RAW 264.7 cells. Treatment of peritoneal macrophages and RAW 264.7 cells with radicicol inhibited LPS-stimulated nitric oxide production in a dose-related manner. Immunohistochemical staining of iNOS and RTPCR analysis showed that the decrease of NO was due to the inhibition of iNOS gene expression in RAW 264.7 cells. Immunostaining of p65, EMSA, and reporter gene assay showed that radicicol inhibited $NF-\kappa/Rel$ nuclear translocation. DNA binding, and transcriptional activation, respectively. Collectively, these series of experiments indicate that radicicol inhibits iNOS gene expression by blocking $NF-\kappa/Rel$ nuclear translocation. Due to the critical role that NO release plays in mediating inflammatory responses, the inhibitory effects of radicicol on iNOS suggest that radicicol may represent a useful anti-inflammatory agent.

Effect of Biphenyl Dimethyl Dicarboxylate on the Immunosuppression of Ketokonazole (비페닐 디메칠 디카르복실레이트가 케토코나졸의 면역억제에 미치는 영향)

  • Lim, Jong-Pil;Yang, Jae-Heon
    • Journal of Pharmaceutical Investigation
    • /
    • v.28 no.4
    • /
    • pp.241-247
    • /
    • 1998
  • Ketoconazole is an imidazole antifungal agent which inhibits the biosynthesis of fungal cellmembrane ergosterol and has immunosuppressive properties in vitro. Biphenyl dimethyl dicarboxylate (PMC) has been utilized for antioxidative action and for liver-protective purposes. Studies were undertaken to investigate effects of biphenyl dimethyl dicarboxylate (PMC) on the immunosuppression of ketoconazole in ICR mice. In the combination of PMC and ketoconazole, as compared with the treatment of ketoconazole alone, there were significant increases in activities of natural killer (NK) cells and phagocytes along with circulation leukocytes. The elevation of serum glutamic-pyruvic transaminase (S-GPT) and total protein levels caused by ketoconazole were reduced by the combination of PMC and ketoconazole. In addition, lower serum albumin and albumin/globulin (A/G) ratio were also increased to normal level.

  • PDF

Study of antimicrobial activity and the mode of action of Anal P5 peptide

  • Park, Yoonkyung;Hahm, Kyung-Soo
    • Journal of Integrative Natural Science
    • /
    • v.1 no.1
    • /
    • pp.47-53
    • /
    • 2008
  • In a previous study, we showed that Cecropin A (1-8)-Magainin 2 (1-12) hybrid peptide (CA-MA)'s analogue, Anal P5, exhibit broad-spectrum antimicrobial activity. Anal P5, designed by flexible region (positions 9, 10)-substitution, Lys- (positions 4, 8, 14, 15) and Leu- (positions 5, 6, 12, 13, 16, 17, 20) substitutions, showed an enhanced antimicrobial and antitumor activity without hemolysis. The primary objective of the present study was to gain insight into the relevant mechanisms of antimicrobial activities of Anal P5 by using flow cytometric analysis. Anal P5 exhibits strong antifungal activity in a salt concentration independent manner. In addition, Anal P5 causes significant morphological alterations of the bacterial surfaces as shown by scanning electron microscopy, supporting its antibacterial activity. Its potent antibiotic activity suggests that Anal P5 is an excellent candidate as a lead compound for the development of novel antibiotic agents.

  • PDF

Anti-inflammatory Effect and Inhibition of Melanin Biosynthesis of Clematis mandshurica (위령선 추출물의 항염활성 및 멜라닌 생성 억제효과)

  • Kim, Ye Rim;Hong, Yun Jung;Yang, Ki Sook
    • YAKHAK HOEJI
    • /
    • v.58 no.1
    • /
    • pp.47-52
    • /
    • 2014
  • Clematis mandshurica (Ranunculaceae) has traditionally been used as a remedy for antidiuretic, antifungal, rheumatic conditions and alleviate pain. We carried out to evaluate the anti-oxidative effect, anti-inflammatory effect and anti-melanogenic effect of ethanol extract and solvent fractions of Clematis mandshurica. The ethanol extract and the dichloromethane fraction of Clematis mandshurica showed an anti-oxidative effect in DPPH assay, the inhibitory activity of nitric oxide (NO) production in lipopolysaccharide (LPS) activated RAW 264.7 cell, and melanin synthesis and tyrosinase activity of B16F10 melanoma cells. They reduced NO production and melanin content in a dose-dependent manner at concentrations of $2.5{\sim}10{\mu}g/ml$. They also suppressed iNOS and tyrosinase protein and m-RNA expressions dose dependently, assayed by western blot analysis and RT-PCR experiment.

Activated Phenoloxidase Interacts with A Novel Glycine-rich Protein on the Yeast Two-hybrid System

  • Lee, Sun-Woo;Lee, Hyun-Seong;Kim, Eun-Jun;Yoo, Mi-Ae;Lee, Bok-Luel
    • BMB Reports
    • /
    • v.34 no.1
    • /
    • pp.15-20
    • /
    • 2001
  • One of the innate immune reactions in invertebrates is the pro-phenoloxidase (pro-PO) activation system that is involved in the generation of superoxide, melanin synthesis, and the subsequent sequestration of foreign matter entering the hemocoel of the invertebrates. However, the molecular mechanism of this biological reaction is still obscure. To expand our understanding of the biological roles of the pro-PO activation system in invertebrates, we performed a yeast two-hybrid screening by using three regions of pro-PO as bait and a yeast two-hybrid cDNA library from Tenebrio molitor larvae as prey We isolated a novel partial cDNA clone that encodes a glycine-rich protein that interacted with the active phenoloxidase (termed phenoloxidase interacting protein, POIP). POIP consists of two domains: One is an N-terminal unique domain and the other is a C-terminal glycine-rich domain. The C-terminal glycine-rich domain showed sequential homology with those of insect antifungal proteins. Also, the yeast two-hybrid screen in a reverse orientation (using POIP as bait) yielded PO, suggesting that the PO-POIP interaction is specific. By using a 315 bP PCR fragment of the N-terminal unique region of POIP, we cloned the full-length cDNA of POIP from the Tenebruo cDNA library constructed by using E. coli injected larvae. The interaction analysis between PO, and a truncated fragment lacking the N-terminal unique region of POIP, indicated that the N-terminal unique region is necessary for interaction between PO and POIP. The expression level of the POIP mRNA is increased by bacterial injection into T. molitor larvae. This suggests that POIP might be engaged in the humoral defense reaction.

  • PDF

Defense Response and Suppression of Phytophthora Blight Disease of Pepper by Water Extract from Spent Mushroom Substrate of Lentinula edodes

  • Kang, Dae-Sun;Min, Kyong-Jin;Kwak, A-Min;Lee, Sang-Yeop;Kang, Hee-Wan
    • The Plant Pathology Journal
    • /
    • v.33 no.3
    • /
    • pp.264-275
    • /
    • 2017
  • The spent mushroom substrate (SMS) of Lentinula edodes that was derived from sawdust bag cultivation was used as materials for controlling Phytophthora blight disease of pepper. Water extract from SMS (WESMS) of L. edodes inhibited mycelial growth of Phytophthora capsici, suppressed Phytophthora blight disease of pepper seedlings by 65% and promoted growth of the plant over 30%. In high performance liquid chromatography (HPLC) analysis, oxalic acid was detected as the main organic acid compound in WESMS and inhibited the fungal mycelium at a minimum concentration of 200 mg/l. In quantitative real-time PCR, the transcriptional expression of CaBPR1 (PR protein 1), CaBGLU (${\beta}$-1,3-glucanase), CaPR-4 (PR protein 4), and CaPR-10 (PR protein 10) were significantly enhanced on WESMS and DL-${\beta}$-aminobutyric acid (BABA) treated pepper leaves. In addition, the salicylic acid content was also increased 4 to 6 folds in the WESMS and BABA treated pepper leaves compared to water treated leaf sample. These findings suggest that WESMS of L. edodes suppress Phytophthora blight disease of pepper through multiple effects including antifungal activity, plant growth promotion, and defense gene induction.