DOI QR코드

DOI QR Code

Defense Response and Suppression of Phytophthora Blight Disease of Pepper by Water Extract from Spent Mushroom Substrate of Lentinula edodes

  • Kang, Dae-Sun (Graduate School of Future Convergence Technology, Hankyong National University) ;
  • Min, Kyong-Jin (Graduate School of Future Convergence Technology, Hankyong National University) ;
  • Kwak, A-Min (Graduate School of Future Convergence Technology, Hankyong National University) ;
  • Lee, Sang-Yeop (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kang, Hee-Wan (Graduate School of Future Convergence Technology, Hankyong National University)
  • Received : 2017.02.03
  • Accepted : 2017.03.22
  • Published : 2017.06.01

Abstract

The spent mushroom substrate (SMS) of Lentinula edodes that was derived from sawdust bag cultivation was used as materials for controlling Phytophthora blight disease of pepper. Water extract from SMS (WESMS) of L. edodes inhibited mycelial growth of Phytophthora capsici, suppressed Phytophthora blight disease of pepper seedlings by 65% and promoted growth of the plant over 30%. In high performance liquid chromatography (HPLC) analysis, oxalic acid was detected as the main organic acid compound in WESMS and inhibited the fungal mycelium at a minimum concentration of 200 mg/l. In quantitative real-time PCR, the transcriptional expression of CaBPR1 (PR protein 1), CaBGLU (${\beta}$-1,3-glucanase), CaPR-4 (PR protein 4), and CaPR-10 (PR protein 10) were significantly enhanced on WESMS and DL-${\beta}$-aminobutyric acid (BABA) treated pepper leaves. In addition, the salicylic acid content was also increased 4 to 6 folds in the WESMS and BABA treated pepper leaves compared to water treated leaf sample. These findings suggest that WESMS of L. edodes suppress Phytophthora blight disease of pepper through multiple effects including antifungal activity, plant growth promotion, and defense gene induction.

Keywords

References

  1. Ahlawat, O. P., Manikandan, K., Sagar, M. P., Raj, D., Gupta, P. and Vijay, B. 2011. Effect of composted button mushroom spent substrate on yield, quality and disease incidence of Pea (Pisum sativum). Mushroom Res. 20:87-94.
  2. Alves, M. J., Ferreira, I. C., Dias, J., Teixeira, V., Martins, A. and Pintado, M. 2012. A review on antimicrobial activity of mushroom (Basidiomycetes) extracts and isolated compounds. Planta Med. 78:1707-1718. https://doi.org/10.1055/s-0032-1315370
  3. Bender, S., Dumitrache-Anghel, C. N., Backhaus, J., Christie, G., Cross, R. F., Lonergan, G. T. and Baker, W. L. 2003. A case for caution in assessing the antibiotic activity of extracts of culinary-medicinal Shiitake mushroom [Lentinus edodes (Berk.) Singer] (Agaricomycetideae). Int. J. Med. Mushrooms 5:31-35. https://doi.org/10.1615/InterJMedicMush.v5.i1.40
  4. Cameron, R. K., Paiva, N. L., Lamb, C. J. and Dixon, R. A. 1999. Accumulation of salicylic acid and PR-1 gene transcripts in relation to the systemic acquired resistance (SAR) response induced by Pseudomonas syringae pv. tomato in Arabidopsis. Physiol. Mol. Plant Pathol. 55:121-130. https://doi.org/10.1006/pmpp.1999.0214
  5. Cessna, S. G., Sears, V. E., Dickman, M. B. and Low, P. S. 2000. Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. Plant Cell 12:2191-2200. https://doi.org/10.1105/tpc.12.11.2191
  6. Chen, J. T. and Huang, J. W. 2010. Antimicrobial activity of edible mushroom culture filtrates on plant pathogens. Plant Pathol. Bull. 19:261-270.
  7. Chen, J. T., Su, H. J. and Huang, J. W. 2012. Isolation and identification of secondary metabolites of Clitocybe nuda responsible for inhibition of zoospore germination of Phytophthora capsici. J. Agric. Food Chem. 60:7341-7344. https://doi.org/10.1021/jf301570y
  8. Di Piero, R. M., Wulff, N. A. and Pascholati, S. F. 2006. Partial purification of elicitor from Lentinula edodes basidiocarps protecting cucumber seedling against Collectotrichum lagenarium. Braz. J. Microbiol. 37:175-180.
  9. Elisashvili, V., Penninckx, M., Kachlishvili, E., Tsiklauri, N., Metreveli, E., Kharziani, T. and Kvesitadze, G. 2008. Lentinus edodes and Pleurotus species lignocellulolytic enzymes activity in submerged and solid-state fermentation of lignocellulosic wastes of different composition. Bioresour. Technol. 99:457-462. https://doi.org/10.1016/j.biortech.2007.01.011
  10. Hwang, B. K. and Kim, C. H. 1995. Phytophthora blight of pepper and its control in Korea. Plant Dis. 79:221-227. https://doi.org/10.1094/PD-79-0221
  11. Inagaki, R. and Yamaguchi, A. 2009. Spent substrate of shiitake (Lentinula edodes) inhibits symptoms of anthracnose in cucumber. Mushroom Sci. Biotechnol. 17:113-115.
  12. Jang, C. S., Min, K. T. and Kim, M. E. 2012. Monthly shiitake observation. Korea Economic Research Institute, Seoul, Korea. pp. 1-4.
  13. Kim, C. H. 2004. Review of disease incidence of major crops in 2003. Res. Plant Dis. 10:1-7. https://doi.org/10.5423/RPD.2004.10.1.001
  14. Kim, Y. J. and Hwang, B. K. 2000. Pepper gene encoding a basic pathogenesis-related 1 protein is pathogen and ethylene inducible. Physiol. Plant. 108:51-60. https://doi.org/10.1034/j.1399-3054.2000.108001051.x
  15. Kim, Y. J., Hwang, B. K. and Park, K. W. 1989. Expression of age-related resistance in pepper plants infected with Phytophthora capsici. Plant Dis. 73:745-747. https://doi.org/10.1094/PD-73-0745
  16. Komemushi, S., Yamamoto, Y. and Fujita, T. 1996. Purification and identification of antimicrobial substances produced by Lentinus edodes. J. Antibacter. Antifung. Agents 24:21-25.
  17. Kwak, A. M., Kang, D. S., Lee, S. Y. and Kang, H. W. 2015. Effect of spent mushroom substrates on Phytophthora blight disease and growth promotion of pepper. J. Mushrooms 13:16-20. https://doi.org/10.14480/JM.2015.13.1.16
  18. Lee, J. W., Gwak, K. S., Kim, S. I., Kim, M., Cho, D. H. and Choi, I. G. 2007. Characterization of xylanase from Lentinus edodes M290 cultured on waste mushroom logs. J. Microbiol. Biotechnol. 17:1811-1817.
  19. Morris, S. C. and Nicholls, P. J. 1978. An evaluation of optical density to estimate fungal spore concentrations in water suspensions. Phytopathology 68:1240-1242. https://doi.org/10.1094/Phyto-68-1240
  20. Nagai, M., Sato, T., Watanabe, H., Saito, K., Kawata, M. and Enei, H. 2002. Purification and characterization of an extracellular laccase from the edible mushroom Lentinula edodes, and decolorization of chemically different dyes. Appl. Microbiol. Biotechnol. 60:327-335. https://doi.org/10.1007/s00253-002-1109-2
  21. Ngai, P. H. and Ng, T. B. 2003. Lentin, a novel and potent antifungal protein from shitake mushroom with inhibitory effects on activity of human immunodeficiency virus-1 reverse transcriptase and proliferation of leukemia cells. Life Sci. 73:3363-3374. https://doi.org/10.1016/j.lfs.2003.06.023
  22. Pacumbaba, R. P., Beyl, C. A. and Pacumbaba, R. O. 1999. Shiitake mycelial leachate suppresses growth of some bacterial species and symptoms of bacterial wilt of tomato and lima bean in vitro. Plant Dis. 83:20-23. https://doi.org/10.1094/PDIS.1999.83.1.20
  23. Parada, R. Y., Murakami, S., Shimomura, N., Egusa, M. and Otani, H. 2011. Autoclaved spent substrate of hatakeshimeji mushroom (Lyophyllum decastes Sing) and its water extract protect cucumber from anthracnose. Crop Protect. 30:443-450. https://doi.org/10.1016/j.cropro.2010.11.021
  24. Parada, R. Y., Murakami, S., Shimomura, N. and Otani, H. 2012. Suppression of fungal and bacterial diseases of cucumber plants by using the spent mushroom substrate of Lyophyllum decastes and Pleurotus eryngii. J. Phytopathol. 160:390-396. https://doi.org/10.1111/j.1439-0434.2012.01916.x
  25. Park, C. J., Kim, K. J., Shin, R., Park, J. M., Shin, Y. C. and Paek, K. H. 2004. Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway. Plant J. 37:186-198. https://doi.org/10.1046/j.1365-313X.2003.01951.x
  26. Park, C. J., Shin, R., Park, J. M., Lee, G. J., Yoo, T. H. and Paek, K. H. 2001. A hot pepper cDNA encoding a pathogenesisrelated protein 4 is induced during the resistance response to tobacco mosaic virus. Mol. Cells 11:122-127.
  27. Parker, J. E., Schulte, W., Hahlbrock, K. and Scheel, D. 1991. An extracellular glycoprotein from Phytophthora megasperma f. sp. glycinea elicits phytoalexin synthesis in cultured parsley cells and protoplasts. Mol. Plant-Microbe Interact. 4:19-27. https://doi.org/10.1094/MPMI-4-019
  28. Parra, G. and Ristaino, J. B. 2001. Resistance to mefenoxam and metalaxyl among field isolates of Phytophthora capsici causing Phytophthora blight of bell pepper. Plant Dis. 85:1069-1075. https://doi.org/10.1094/PDIS.2001.85.10.1069
  29. Poucheret, P., Fons, F. and Rapior, S. 2006. Biological and pharmacological activity of higher fungi: 20-year retrospective analysis. Mycologie 27:311-333.
  30. Repka, V., Fischerova, I. and Silharova, K. 2001. Biological activity of elicitor released from mycelium of grapevine isolate of the necrotrophic fungus Botrytis cinerea. Vitis 40:205-212.
  31. Roy, S., Barman, S., Chakraborty, U. and Chakraborty, B. 2015. Evaluation of spent mushroom substrate as biofertilizer for growth improvement of Capsicum annuum L. J. Appl. Biol. Biotechnol. 3:022-027.
  32. Sang, M. K., Kim, J. G. and Kim, K. D. 2010. Biocontrol activity and induction of systemic resistance in pepper by compost water extracts against Phytophthora capsici. Phytopathology 100:774-783. https://doi.org/10.1094/PHYTO-100-8-0774
  33. Sang, M. K. and Kim, K. D. 2011. Biocontrol activity and primed systemic resistance by compost water extracts against anthracnoses of pepper and cucumber. Phytopathology 101:732-740. https://doi.org/10.1094/PHYTO-10-10-0287
  34. Sang, M. K., Shrestha, A., Kim, D. Y., Park, K., Pak, C. H. and Kim, K. D. 2013. Biocontrol of Phytophthora blight and anthracnose in pepper by sequentially selected antagonistic rhizobacteria against Phytophthora capsici. Plant Pathol. J. 29:154-167. https://doi.org/10.5423/PPJ.OA.07.2012.0104
  35. Shibuya, N. and Minami, E. 2001. Oligosaccharide signaling for defense responses in plant. Physiol. Mol. Plant Pathol. 59:223-233. https://doi.org/10.1006/pmpp.2001.0364
  36. Stephan, D., Schmitt, A., Martins Cavalho, S., Seddon, B. and Koch, E. 2005. Evaluation of biocontrol preparations and plant extracts for the control of Phytophthora infestans on potato leaves. Eur. J. Plant Pathol. 112:235-246. British Columbia Mushroom Industry. Columbia, UK. 101pp. https://doi.org/10.1007/s10658-005-2083-1
  37. Suay, I., Arenal, F., Asensio, F. J., Basilio, A., Cabello, M. A., Diez, M. T., Garcia, J. B., del Val, A. G., Gorrochategui, J., Hernandez, P., Pelaez, F. and Vicente, M. F. 2000. Screening of basidiomycetes for antimicrobial activities. Antonie Leeuwenhoek 78:129-139. https://doi.org/10.1023/A:1026552024021
  38. Subramaniyam, R. and Vimala, R. 2012. Solid state and submerged fermentation for the production of bioactive substances: a comparative study. Int. J. Sci. Nat. 3:480-486.
  39. Suess, A. and Curtis, J. 2006. Report: value-added strategies for spent mushroom substrate in BC. British Columbia Mushroom Industry, Columbia, UK. 101 pp.
  40. Sunwoo, J. Y., Lee, Y. K. and Hwang, B. K. 1996. Induced resistance against Phytophthora capsici in pepper plants in response to DL-${\beta}$-amino-n-butyric acid. Eur. J. Plant Pathol. 102:663-670. https://doi.org/10.1007/BF01877247
  41. Vikineswary, S., Kumaran, K. S., Ling, S. K., Dinesh, N. and Shim, Y. L. 1997. Solid substrate fermentation of agroresidues for value added products: the Malaysian experience. Global Environ. Biotechnol. 3:301-305.
  42. Walters, D., Walsh, D., Newton, A. and Lyon, G. 2005. Induced resistance for plant disease control: maximizing the efficacy of resistance elicitors. Phytopathology 95:1368-1373. https://doi.org/10.1094/PHYTO-95-1368
  43. Walters, D. R. and Fountaine, J. M. 2009. Practical application of induced resistance to plant diseases: an appraisal of effectiveness under field conditions. J. Agric. Sci. 147:523-535. https://doi.org/10.1017/S0021859609008806
  44. Wong, J. H., Ng, T. B., Cheung, R. C., Ye, X. J., Wang, H. X., Lam, S. K., Lin, P., Chan, Y. S., Fang, E. F., Ngai, P. H., Xia, L. X., Ye, X. Y., Jiang, Y. and Liu, F. 2010. Proteins with antifungal properties and other medicinal applications from plants and mushrooms. Appl. Microbiol. Biotechnol. 87:1221-1235. https://doi.org/10.1007/s00253-010-2690-4
  45. Yang, J. W., Yi, H. S., Kim, H. K., Lee, B. Y., Lee, S. H., Ghim, S. Y. and Ryu, C. M. 2011. Whitefly infestation of pepper plants elicits defence responses against bacterial pathogens in leaves and roots and changes the below-ground microflora. J. Ecol. 99:46-56. https://doi.org/10.1111/j.1365-2745.2010.01756.x
  46. Yang, J. W., Yu, S. H. and Ryu, C. M. 2009. Priming of defenserelated genes confers root-colonizing bacilli-elicited induced systemic resistance in pepper. Plant Pathol. J. 25:389-399. https://doi.org/10.5423/PPJ.2009.25.4.389