• Title/Summary/Keyword: antifungal compounds

Search Result 361, Processing Time 0.024 seconds

Synthesis of Certain Substituted Quinoxalines as Antimicrobial Agents (Part II)

  • Mohga.M.Badran;Khaled.A.M.Abouzid;M. H. M. Hussein
    • Archives of Pharmacal Research
    • /
    • v.26 no.2
    • /
    • pp.107-113
    • /
    • 2003
  • Several fused triazolo and ditriazoloquinoxaline derivatives such as 1-aryl-4-chloro-[1,2,4]triazolo[4,3-a]quinoxalines (3a-d), 4-alkoxy[1,2,4]triazolo[4,3-a]quinoxalines (4a,b), 4-substituted-amino-[1,2,4] triazolo[4,3-a]quinoxalines (5a-h), 1-(aryl)-[1,2,4]triazolo[4,3-a]quinoxalin-4(5H)-thione (6), 4-(arylidenehydrazino )-1-phenyl-[1,2,4]triazolo[4,3-a]quinoxalines (10a-e) and [1,2,4]ditriazolo[4,3-a:3',4'-c]quinoxaline derivatives (11-13) have been synthesized and some of these derivatives were evaluated for antimicrobial and antifungal activity in vitro. It was found that compounds 3a and 9b possess potent antibacterial activity compared to the standard tetracycline.

Antifungal Activity of Alcohol Extract and Crystal(A) of Berberis Koreana Palibin (매자나무뿌리 알콜 추출물의 항진균 작용)

  • Kim, Yoon-Keun;Park, Chung-Soon
    • The Korean Journal of Pharmacology
    • /
    • v.5 no.1
    • /
    • pp.51-54
    • /
    • 1969
  • The fungistatic effects of extract and crystal (A) of Berberis Koreans Palibin, a common shrub in Korea, were obeserved and compared with undecylenic acid and vegetable oil. In vitro studies, the spores of fungi were inoculated on Sabouraud's glucose agar media which contained compounds of various concentration, and the growth of the fungi was observed for 3 weeks. The species of the fungi used in these experiments were Epidermophyton floccosum, Microsporum gypseum, Microsporum audouini, Microsporum canis, Microsporum nanum, Microsporum cookei, Trichophyton rubrum, Trichophyton mentagrophytes, Trichophyton tonsurans and Trichophyton verrucosum. The results of the studies were as follows: 1. The growth of E. floccosum, M. audouni, M. canis, M. nanum, M. cookei, was inhibited in Sabouraud's glucose agar media containing extract and crystal (A) of Berberis Koreana Palibin 1 mg/ml.

  • PDF

Selective Synthesis of 3,4-Dihydrocoumarins and Chalcones from Substituted Aryl Cinnamic Esters

  • Jeon, Jae-Ho;Yang, Deok-Mo;Jun, Jong-Gab
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.65-70
    • /
    • 2011
  • Coumarins are ubiquitous in plant kingdom and have been used as antitumor, antifungals, anticoagulants, insecticides. Chalcones are also widespread in plant kingdom and have been known to possess diverse biological activities; antibacterial, antifungal, antitumor and anti-inflammatory, etc. As they are considered as important natural products, numerous synthetic approaches have been reported up to the present. We devise a new selective method of preparing dihydrocoumarins and chalcones from aryl cinnamates by the selection of reagents. Dihydrocoumarin derivatives were prepared selectively by using intramolecular cyclization catalyzed by p-toluene sulfonic acid. Also, chalcones were prepared by Fries-rearrangement catalyzed by $TiCl_4$. This method can be used for preparing various coumarin & chalcone compounds.

Improving the stability of the football ball by adding nanocomposites into polymer layer

  • Huayun Tian;Lu Li
    • Advances in nano research
    • /
    • v.17 no.1
    • /
    • pp.51-59
    • /
    • 2024
  • Nanotechnology, the science of manipulating matter at the nanoscale, offers remarkable opportunities for innovation across various fields. Nanomaterials, which form the cornerstone of advanced materials, drive forward new ideas and groundbreaking applications. In the textile industry, traditional antibacterial and antifungal garments are typically treated with chemical compounds to inhibit bacterial growth. However, these treatments often lack durability, losing effectiveness after multiple washes. To address this limitation, the application of green nanotechnology in developing high-performance textiles emerges as a promising solution. This study explores the integration of nanocomposites into the polymer layers of footballs to enhance their stability and performance. By embedding nanoparticles within the polymer matrix, the durability and resilience of the footballs are significantly improved, leading to better control and performance on the field. This innovative approach not only extends the lifespan of the footballs but also provides economic advantages by reducing the frequency of replacements. Additionally, the enhanced stability contributes to a more consistent and reliable playing experience, promoting improved safety and performance for athletes.

Synthesis and Phytophathogenic Activities of Isopropylmethylphenyl benzenesulfonate Derivatives (Isopropylmethylphenyl benzenesulfonate 유도체의 합성과 식물병원균에 대한 생리활성)

  • Choi, Won-Sik;Nam, Seok-Woo;Kim, Hak-Cheun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.4854-4862
    • /
    • 2010
  • Twenty five compounds isopropylmethylphenyl benzenesulfonate derivatives of thymol (1), 4-isopropyl-3-methylphenol (2), 5-isopropyl-3-methylphenol (3), 4-isopropylphenol (4), and 2-isopropylphenol (5) derivatives were synthesized. These compounds were analyzed for their structural confirmation with IR, GC/MS, and $^1H$-NMR. Synthetic compounds were tested against phytopathogenic fungi activities such as Pyrcularia grisea, Rhizoctonia solani, Phytophthora infestans, Colletotrichum orbiculare, and Sphaerotheca fusca. 2-Isopropyl-5-methylphenyl o-toluenesulfonate (1a), 2-isopropylphenyl 2,4,5-trichloro-benzenesulfonate (5b) and 2-isopropylphenyl 2-methyl-5-nitrobenzenesulfonate (5e) showed a potent in vivo antifungal activity against Pyrcularia grisea, Phytophthora infestans and Sphaerotheca fusca.

Disease Control Efficacy of Chitosan Preparations against Tomato Leaf Mold (토마토 잎곰팡이병에 대한 키토산 제제의 방제 효과)

  • Chang, Tae-Hyun
    • Research in Plant Disease
    • /
    • v.15 no.3
    • /
    • pp.248-253
    • /
    • 2009
  • Chitosan has an antifungal activity and is widely used for control of various plant disease and plants growth in the field in Korea. Disease control efficacy of two preparations (SH-1, SH-2) of mixtures of high and low (chitooligosaccharide) molecular weight chitosan compounds against tomato leaf mold caused by Fulvia fulva was investigated under plastic greenhouse conditions. Both SH-1 and SH-2 formulations displayed potent disease control activity in two experiments. The protective activity of both preparations was comparable to synthetic thiophanate-M. The persistence activity of the formulations was sustained until 21 days after application. Effective concentration of the chtosan compounds for disease control was 1,200 mg a.i./L. In pot tests, chitosan preparations, at a concentration of 600 mg a.i./L, promoted plants growth. These results indicate that the chitosan preparations have a potential as an eco-friendly natural fungicide for the control of tomato leaf mold and plant growth regulator.

Extraction and Application of Bulk Enzymes and Antimicrobial Substance from Spent Mushroom Substrates

  • Lim, Seon-Hwa;Kwak, A Min;Min, Kyong-Jin;Kim, Sang Su;Kang, Hee Wan
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.19-19
    • /
    • 2014
  • Pleurotus ostreatus, P. eryngii, and Flammulina velutipes are major edible mushrooms that account for over 89% of total mushroom production in Korea. Recently, Agrocybe cylindracea, Hypsizygus marmoreus, and Hericium erinaceu are increasingly being cultivated in mushroom farms. In Korea, the production of edible mushrooms was estimated to be 614,224 ton in 2013. Generally, about 5 kg of mushroom substrate is needed to produce 1 kg of mushroom, and consequently about 25 million tons of spent mushroom substrate (SMS) is produced each year in Korea. Because this massive amount of SMC is unsuitable for reuse in mushroom production, it is either used as garden fertilizer or deposited in landfills, which pollutes the environment. It is reasonably assumed that SMS includes different secondary metabolites and extracellular enzymes produced from mycelia on substrate. Three major groups of enzymes such as cellulases, xylanases, and lignin degrading enzymes are involved in breaking down mushroom substrates. Cellulase and xylanase have been used as the industrial enzymes involving the saccharification of biomass to produce biofuel. In addition, lignin degrading enzymes such as laccases have been used to decolorize the industrial synthetic dyes and remove environmental pollutions such as phenolic compounds. Basidiomycetes produce a large number of biologically active compounds that show antibacterial, antifungal, antiviral, cytotoxic or hallucinogenic activities. However, most previous researches have focused on therapeutics and less on the control of plant diseases. SMS can be considered as an easily available source of active compounds to protect plants from fungal and bacterial infections, helping alleviate the waste disposal problem in the mushroom industry and creating an environmentally friendly method to reduce plant pathogens. We describe extraction of lignocellulytic enzymes and antimicrobial substance from SMSs of different edible mushrooms and their potential applications.

  • PDF

Enantioselective Hydrolysis for the Precursor of Azole-containing Compounds using Acinetobacter sp. SY-01 Lipase and Increase of Enantioselectivity by the Removal of Reaction Products (Acinetobacter sp. SY-01 Lipase를 이용한 아졸계 화합물 전구체에 대한 광학선택적 가수분해 반응과 생성물 제거에 의한 광학선택성 증가)

  • 윤문영;신평균;정찬성;박정극
    • KSBB Journal
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • Screening of a strain was carried out to produce an enantioselective lipase toward the precursor of ltraconazole as azole-containg compounds, which are well known as antifungal drug agents. An Acinetobacter sp. SY-01 strain which can selectively hydrolyze the racemic substrates was isolated and the racemic substrate was resolved to the S-ester in 95.6% enantiomeric excess after 74.8% hydrolysis. The optimum temperature and pH for the conversion were $50^{\circ}C$, pH 7.0. However, the temperature and pH had no effect on the enantiomeric excess. Addition of solvents decreased the conversion and slightly increased the enantiomeric excess. However, the kind of solvents had no effect on enantiomeric excess. The substrate concentration decrease enantiomeric excess and this is confirmed by the products generated from hydrolysis, and also enantiomeric excess could be increased by the removal of reaction products.

Foliar Application of Plant Growth-Promoting Rhizobacteria Increases Antifungal Compounds in Pea (pisum sativum) Against Erysiphe pisi

  • Bahadur, A.;Singh, U. P.;Sarma, B. K.;Singh, D. P.;Singh, K. P.;Singh, A.
    • Mycobiology
    • /
    • v.35 no.3
    • /
    • pp.129-134
    • /
    • 2007
  • Systemic effect of two plant growth-promoting rhizobacterial (PGPR) strains, viz., Pseudomonas fluorescens (Pf4) and P. aeruginosa (Pag), was evaluated on pea (Pisum sativum) against the powdery mildew pathogen Erysiphe pisi. Foliar spray of the two PGPR strains was done on specific nodal leaves of pea and conidial germination of E. pisi was observed on other nodal leaves, distal to the treated ones. Conidial germination was reduced on distant leaves and at the same time, specific as well as total phenolic compounds increased in the leaves distal to those applied with PGPR strains, thereby indicating a positive correlation. The strains induced accumulation of phenolic compounds in pea leaves and the amount increased when such leaves were get inoculated with E. pisi conidia. Between the two strains, Pag was found to be more effective than Pf4 as its effect was more persistent in pea leaves. Foliar application of PGPR strains for the control of powdery mildew of pea is demonstrated in vitro while correlating it with the increased accumulation of plant phenolics.

Complete Genome Sequence and Antimicrobial Activities of Bacillus velezensis MV2 Isolated from a Malva verticillate Leaf (아욱 잎에서 분리한 Bacillus velezensis MV2의 유전체 염기서열 분석과 항균활성능 연구)

  • Lee, Hyeonju;Jo, Eunhye;Kim, Jihye;Moon, Keumok;Kim, Min Ji;Shin, Jae-Ho;Cha, Jaeho
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.1
    • /
    • pp.111-119
    • /
    • 2021
  • A bacterial strain isolated from a Malva verticillata leaf was identified as Bacillus velezensis MV2 based on the 16S rRNA sequencing results. Complete genome sequencing revealed that B. velezensis MV2 possessed a single 4,191,702-bp contig with 45.57% GC content. Generally, Bacillus spp. are known to produce diverse antimicrobial compounds including bacteriocins, polyketides, and non-ribosomal peptides. Antimicrobial compounds in the B. velezensis MV2 were extracted from culture supernatants using hydrophobic interaction chromatography. The crude extracts showed antimicrobial activity against both gram-positive bacteria and gram-negative bacteria; however, they were more effective against gram-positive bacteria. The extracts also showed antifungal activity against phytopathogenic fungi such as Fusarium fujikuroi and F. graminearum. In time-kill assays, these antimicrobial compounds showed bactericidal activity against Bacillus cereus, used as indicator strain. To predict the type of antimicrobial compounds produced by this strain, we used the antiSMASH algorithm. Forty-seven secondary metabolites were predicted to be synthesized in MV2, and among them, fourteen were identified with a similarity of 80% or more with those previously identified. Based on the antimicrobial properties, the antimicrobial compounds may be nonribosomal peptides or polyketides. These compounds possess the potential to be used as biopesticides in the food and agricultural industry as an alternative to antibiotics.