DOI QR코드

DOI QR Code

Improving the stability of the football ball by adding nanocomposites into polymer layer

  • Huayun Tian (Department of Physical Education, Wuhan University of Technology) ;
  • Lu Li (Department of Physical Education, Wuhan University of Technology)
  • Received : 2023.01.21
  • Accepted : 2024.07.08
  • Published : 2024.07.25

Abstract

Nanotechnology, the science of manipulating matter at the nanoscale, offers remarkable opportunities for innovation across various fields. Nanomaterials, which form the cornerstone of advanced materials, drive forward new ideas and groundbreaking applications. In the textile industry, traditional antibacterial and antifungal garments are typically treated with chemical compounds to inhibit bacterial growth. However, these treatments often lack durability, losing effectiveness after multiple washes. To address this limitation, the application of green nanotechnology in developing high-performance textiles emerges as a promising solution. This study explores the integration of nanocomposites into the polymer layers of footballs to enhance their stability and performance. By embedding nanoparticles within the polymer matrix, the durability and resilience of the footballs are significantly improved, leading to better control and performance on the field. This innovative approach not only extends the lifespan of the footballs but also provides economic advantages by reducing the frequency of replacements. Additionally, the enhanced stability contributes to a more consistent and reliable playing experience, promoting improved safety and performance for athletes.

Keywords

References

  1. Ali, G., Sharma, M., Salama, E.S., Ling, Z. and Li, X. (2022a), "Applications of chitin and chitosan as natural biopolymer: potential sources, pretreatments, and degradation pathways", Biomass Convers. Biorefin., 14(4), 4567-4581. https://doi.org/10.1007/s13399-022-02684-x. 
  2. Ali, O.M., Hasanin, M.S., Suleiman, W.B., Helal, E.E.H. and Hashem, A.H. (2022b), "Green biosynthesis of titanium dioxide quantum dots using watermelon peel waste: Antimicrobial, antioxidant, and anticancer activities", Biomass Convers. Biorefin., 14(5), 6987-6998. https://doi.org/10.1007/s13399-022-02772-y. 
  3. Anbumani, D., Dhandapani, K.v., Manoharan, J., Babujanarthanam, R., Bashir, A.K.H., Muthusamy, K., Alfarhan, A. and Kanimozhi, K. (2022), "Green synthesis and antimicrobial efficacy of titanium dioxide nanoparticles using Luffa acutangula leaf extract", J. King Saud Univ. Sci., 34(3), 101896. https://doi.org/10.1016/j.jksus.2022.101896. 
  4. Ashfaq, A., Khursheed, N., Fatima, S., Anjum, Z. and Younis, K. (2022), "Application of nanotechnology in food packaging: Pros and Cons", J. Agric. Food Res., 7, 100270. https://doi.org/10.1016/j.jafr.2022.100270. 
  5. Azimi, M., Mirjavadi, S.S., Shafiei, N. and Hamouda, A.M.S. (2016), "Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam", Appl. Phys. A, 123(1), 104. https://doi.org/10.1007/s00339-016-0712-5. 
  6. Basu, P.K. and Dhasmana, H. (2022), Introduction to Nanotechnology, Springer International Publishing, Cham Springer International Publishing. 
  7. Biswal, T., BadJena, S.K. and Pradhan, D. (2020), "Synthesis of polymer composite materials and their biomedical applications", Mater. Today Proc., 30, 305-315. https://doi.org/10.1016/j.matpr.2020.01.567. 
  8. Bull, F., Tavaddod, S., Bommer, N., Perry, M., Brackley, C.A. and Allen, R.J. (2022), "Urine production rate is critical in a model for catheter-associated urinary tract infection", bioRxiv. 2022.10. https://doi.org/10.1101/2022.10.31.514508. 
  9. Bunmahotama, W., Vijver, M.G. and Peijnenburg, W. (2022), "Development of a quasi-quantitative structure-activity relationship model for prediction of the immobilization response of daphnia magna exposed to metal-based nanomaterials", Environ. Toxicol. Chem., 41(6), 1439-1450. https://doi.org/10.1002/etc.5322. 
  10. Campagnini, S., Arienti, C., Patrini, M., Liuzzi, P., Mannini, A. and Carrozza, M.C. (2022), "Machine learning methods for functional recovery prediction and prognosis in post-stroke rehabilitation: a systematic review", J. NeuroEng. Rehabil., 19(1), 54. https://doi.org/10.1186/s12984-022-01032-4. 
  11. Chen, J. (2023), "Thermal and viscosity properties of inhomogeneous fluids with suspended graphene nanoparticles", Authorea Preprints. https://doi.org/10.22541/au.167407982.22921470/v1. 
  12. Cuong Bui, H. (2022), "Buckling analysis of thin-walled circular hollow section members with and without longitudinal stiffeners", Struct. Eng. Mech., 81(2), 231-242. https://doi.org/10.12989/SEM.2022.81.2.231. 
  13. Choudhary, M.D., Iskender, A., Ghada, A. and Ozan, T.H. (2022), "Radiation-shielding properties of titanium dioxide-added composites", Emerg. Mater. Res., 11(3), 319-324. https://doi.org/10.1680/jemmr.22.00054. 
  14. Ding, H.X. and She, G.L. (2021), "A higher-order beam model for the snap-buckling analysis of FG pipes conveying fluid", Struct. Eng. Mech., 80(1), 63-72. https://doi.org/10.12989/SEM.2021.80.1.063. 
  15. Ebrahimi, F., Shafiei, N., Kazemi, M. and Mousavi Abdollahi, S.M. (2017), "Thermo-mechanical vibration analysis of rotating nonlocal nanoplates applying generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(15), 1257-1273. https://doi.org/10.1080/15376494.2016.1227499. 
  16. Egwu, C.N., Babalola, R., Udoh, T.H. and Esio, O.O. (2022), Nanotechnology: Applications, Challenges, and Prospects, Springer International Publishing, Cham. 
  17. Ehyaei, J., Akbarshahi, A. and Shafiei, N. (2017), "Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam", Adv. Nano Res., 5(2), 141. https://doi.org/10.12989/anr.2017.5.2.141. 
  18. Esparham, A., Moradikhou Amir, B., Andalib Faeze, K. and Avanaki Mohammad, J. (2021), "Strength characteristics of granulated ground blast furnace slag-based geopolymer concrete", Adv. Concr. Constr., 11(3), 219-229. https://doi.org/10.12989/ACC.2021.11.3.219. 
  19. Ghadiri, M., Hosseini, S.H.S. and Shafiei, N. (2016a), "A power series for vibration of a rotating nanobeam with considering thermal effect", Mech. Adv. Mater. Struct., 23(12), 1414-1420. https://doi.org/10.1080/15376494.2015.1091527. 
  20. Ghadiri, M., Shafiei, N. and Alireza Mousavi, S. (2016b), "Vibration analysis of a rotating functionally graded tapered microbeam based on the modified couple stress theory by DQEM", Appl. Phys. A, 122(9), 837. https://doi.org/10.1007/s00339-016-0364-5. 
  21. Ghadiri, M., Shafiei, N., Salekdeh, S.H., Mottaghi, P. and Mirzaie, T. (2016c), "Investigation of the dental implant geometry effect on stress distribution at dental implant-bone interface", J. Brazil. Soc. Mech. Sci. Eng., 38(2), 335-343. https://doi.org/10.1007/s40430-015-0472-8. 
  22. Ghadiri, M., Shafiei, N. and Alavi, H. (2017a), "Thermomechanical vibration of orthotropic cantilever and propped cantilever nanoplate using generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(8), 636-646. https://doi.org/10.1080/15376494.2016.1196770. 
  23. Ghadiri, M., Shafiei, N. and Babaei, R. (2017b), "Vibration of a rotary FG plate with consideration of thermal and Coriolis effects", Steel Compos. Struct., 25(2), 197-207. https://doi.org/10.12989/scs.2017.25.2.197. 
  24. Ghadiri, M., Shafiei, N. and Hossein Alavi, S. (2017c), "Vibration analysis of a rotating nanoplate using nonlocal elasticity theory", J. Solid Mech. 9(2), 319-337. 
  25. Govarthanan, M., Manikandan, S., Subbaiya, R., Krishnan, R.Y., Srinivasan, S., Karmegam, N. and Kim, W. (2022), "Emerging trends and nanotechnology advances for sustainable biogas production from lignocellulosic waste biomass: A critical review", Fuel, 312, 122928. https://doi.org/10.1016/j.fuel.2021.122928. 
  26. Guo, X., Liu, Y. and Wang, G. (2021), "Computer modeling for frequency performance of viscoelastic magneto-electro-elastic annular micro/nanosystem via adaptive tuned deep learning neural network optimization", Adv. Nano Res., 11(2), 203-218. https://doi.org/10.12989/anr.2021.11.2.203. 
  27. Hangarter, C.M., Chartuprayoon, N., Hernandez, S.C., Choa, Y. and Myung, N.V. (2013), "Hybridized conducting polymer chemiresistive nano-sensors", Nano Today, 8(1), 39-55. https://doi.org/10.1016/j.nantod.2012.12.005. 
  28. Huang, S., Zong, G., Niu, B., Xu, N. and Zhao, X. (2024), "Dynamic self-triggered fuzzy bipartite time-varying formation tracking for nonlinear multiagent systems with deferred asymmetric output constraints", IEEE T. Fuzzy Syst., 32(5), 2700-2712. https://doi.org/10.1109/TFUZZ.2024.3357083. 
  29. Janssen, H., Ada, L., Middleton, S., Pollack, M., Nilsson, M., Churilov, L., Blennerhassett, J., Faux, S., New, P., McCluskey, A., Spratt, N.J. and Bernhardt, J. (2021), "Altering the rehabilitation environment to improve stroke survivor activity: A Phase II trial", Int. J. Stroke, 17(3), 299-307. https://doi.org/10.1177/17474930211006999. 
  30. Jia, S., Niu, X., Jia, F. and Mahmoudi, T. (2023), "Advantages and disadvantages of renewable energy-oil-environmental pollution-from the point of view of nanoscience", Adv. Concr. Constr., 16(1), 69-78. https://doi.org/10.12989/acc.2023.16.1.069. 
  31. Jiang, Y., Liu, L., Yan, J. and Wu, Z. (2024), "Room-to-low temperature thermo-mechanical behavior and corresponding constitutive model of liquid oxygen compatible epoxy composites", Compos. Sci. Technol., 245, 110357. https://doi.org/10.1016/j.compscitech.2023.110357. 
  32. Joudeh, N. and Linke, D. (2022), "Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists", J. Nanobiotech., 20(1), 262. https://doi.org/10.1186/s12951-022-01477-8. 
  33. Kaushik, S. (2022), Nanoproducts: Biomedical, Environmental, and Energy Applications, Springer Nature Singapore, Singapore. 
  34. Khan, S., Mansoor, S., Rafi, Z., Kumari, B., Shoaib, A., Saeed, M., Alshehri, S., Ghoneim, M.M., Rahamathulla, M., Hani, U. and Shakeel, F. (2022a), "A review on nanotechnology: Properties, applications, and mechanistic insights of cellular uptake mechanisms", J. Mol. Liq., 348, 118008. https://doi.org/10.1016/j.molliq.2021.118008. 
  35. Khan, Y., Sadia, H., Ali Shah, S.Z., Khan, M.N., Shah, A.A., Ullah, N., Ullah, M.F., Bibi, H., Bafakeeh, O.T. and Khedher, N.B. (2022b), "Classification, synthetic, and characterization approaches to nanoparticles, and their applications in various fields of nanotechnology: a review", Catalysts, 12(11), 1386. https://doi.org/10.3390/catal12111386. 
  36. Kuroiwa, Y. and Tatsuma, T. (2020), "Laser printing of translucent plasmonic full-color images with transmission-scattering dichroism of silver nanoparticles", ACS Appl. Nano Mater., 3(3), 2472-2479. https://doi.org/10.1021/acsanm.9b02560. 
  37. Modreanu, S. (2022), "The Turbulent Sea of Virtual Particles... and the Transdisciplinary Vision", Transdiscipl. J. Eng. Sci., 13. https://doi.org/10.22545/2022/00178. 
  38. Mohammadpour, Z. and Naghib, S.M. (2021), Chapter 15 - Smart Nanosensors for Intelligent Packaging, Elsevier.
  39. Mousavi, S.M., Shafiei, N. and Dadvand, A. (2017), "Numerical simulation of subsonic turbulent flow over NACA0012 airfoil: evaluation of turbulence models", Sigma J. Eng. Natural Sci., 35(1), 133-155. 
  40. Muller, K., Bugnicourt, E., Latorre, M., Jorda, M., Echegoyen Sanz, Y., Lagaron, J.M., Miesbauer, O., Bianchin, A., Hankin, S. and Bolz, U. (2017), "Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields", Nanomaterials, 7(4), 74. https://doi.org/10.3390/nano7040074. 
  41. Musil, J. and Vlcek, J. (2001), "Magnetron sputtering of hard nanocomposite coatings and their properties", Surface Coat. Technol., 142-144, 557-566. https://doi.org/10.1016/S0257-8972(01)01139-2. 
  42. Nambiar, A.K., Arlandis, S., Bo, K., Cobussen-Boekhorst, H., Costantini, E., de Heide, M., Farag, F., Groen, J., Karavitakis, M., Lapitan, M.C., Manso, M., Arteaga, S.M., Riogh, A.N.A., O,Connor, E., Omar, M.I., Peyronnet, B., Phe, V., Sakalis, V.I., Sihra, N., Tzelves, L., van Poelgeest-Pomfret, M.L., van den Bos, T.W.L., van der Vaart, H. and Harding, C.K. (2022), "European Association of Urology Guidelines on the Diagnosis and Management of Female Non-neurogenic Lower Urinary Tract Symptoms. Part 1: Diagnostics, Overactive Bladder, Stress Urinary Incontinence, and Mixed Urinary Incontinence", Eur. Urol., 82(1), 49-59. https://doi.org/10.1016/j.eururo.2022.01.045. 
  43. Okeke, E.S., Chukwudozie, K.I., Nyaruaba, R., Ita, R.E., Oladipo, A., Ejeromedoghene, O., Atakpa, E.O., Agu, C.V. and Okoye, C.O. (2022), "Antibiotic resistance in aquaculture and aquatic organisms: a review of current nanotechnology applications for sustainable management", Environ. Sci. Pollut. Res., 29(46), 69241-69274. https://doi.org/10.1007/s11356-022-22319-y. 
  44. Omidi, S., Oskooee, M.B. and Shafiei, N. (2013), "Finite element analysis of an ultra-fine grained Titanium dental implant covered by different thicknesses of hydroxyapatite layer", Indian J. Dent., 4(1), 1-4. https://doi.org/10.1016/j.ijd.2012.10.002. 
  45. Pang, B., Jin, Z., Zhang, Y., Xu, L., Li, M., Wang, C., Zhang, Y., Yang, Y., Zhao, P., Bi, J., Zhu, W., Shen, Y., Liu, G., Zhu, P. and Song, X. (2022), "Ultraductile waterborne epoxy-concrete composite repair material: Epoxy-fiber synergistic effect on flexural and tensile performance", Cement Concr. Compos., 129, 104463. https://doi.org/10.1016/j.cemconcomp.2022.104463. 
  46. Patel, G., Pillai, V., Bhatt, P. and Mohammad, S. (2020), Chapter 21 - Application of Nanosensors in the Food Industry, Elsevier.
  47. Plastina, S. (2022), Nicholas Hill, an English Atomist, Brill. 
  48. Prabawa, I.M.Y., Silakarma, D., Prabawa, I.P.Y. and Manuaba, I.B.A.P. (2022), "Physical rehabilitation therapy for long covid19 patient with respiratory sequelae: A systematic review", Open Access Macedonian J. Med. Sci., 10(F), 468-474. https://doi.org/10.3889/oamjms.2022.9899. 
  49. Prasada Rao, C.M.M., Vennila, T., Kosanam, S., Ponsudha, P., Suriyakrishnaan, K., Alarfaj, A.A., Hirad, A.H., Sundaram, S.R., Surendhar, P.A. and Selvam, N. (2022), "Assessment of bacterial isolates from the urine specimens of urinary tract infected patient", BioMed Res. Int., 2022, 4088187. https://doi.org/10.1155/2022/4088187. 
  50. Qi, L., Wang, Z., Sun, Y., Khorami, M., Mahmoudi, T. and Wu, H. (2024), "Modified couple stress and artificial intelligence examination of nonlinear buckling in porous variable thickness cylinder micro sport structures", Mech. Adv. Mater. Struct., 1-19. https://doi.org/10.1080/15376494.2024.2316795. 
  51. Rensink, R.A. (2000), "Seeing, sensing, and scrutinizing", Vision Res., 40(10), 1469-1487. https://doi.org/10.1016/S0042-6989(00)00003-1. 
  52. Sadeghpour, F., Nabiyouni, G. and Ghanbari, D. (2022), "Simple synthesis of conductive poly aniline/cobalt ferrite magnetic nanocomposite: its radio waves absorption and photo catalyst ability", J. Cluster Sci., 33(3), 1257-1266. https://doi.org/10.1007/s10876-021-02057-w. 
  53. Seo, B.R. and Mooney, D.J. (2022), "Recent and future strategies of mechanotherapy for tissue regenerative rehabilitation", ACS Biomater. Sci. Eng., 8(11), 4639-4642. https://doi.org/10.1021/acsbiomaterials.1c01477. 
  54. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016), "Nonlinear vibration behavior of a rotating nanobeam under thermal stress using Eringen,s nonlocal elasticity and DQM", Appl. Phys. A, 122(8), 728. https://doi.org/10.1007/s00339-016-0245-y. 
  55. Shafiei, N., Ghadiri, M., Makvandi, H. and Hosseini, S.A. (2017), "Vibration analysis of Nano-Rotor,s Blade applying Eringen nonlocal elasticity and generalized differential quadrature method", Appl. Math. Modell., 43, 191-206. https://doi.org/10.1016/j.apm.2016.10.061. 
  56. Shafiei, N., Hamisi, M. and Ghadiri, M. (2020), "Vibration analysis of rotary tapered axially functionally graded Timoshenko nanobeam in thermal environment", J. Solid Mech., 12(1), 16-32. https://doi.org/10.22034/jsm.2019.563759.1273. 
  57. Shahabinejad, E., Shafiei, N. and Ghadiri, M. (2018), "Influence of temperature change on modal analysis of rotary functionally graded nano-beam in thermal environment", J. Solid Mech., 10(4), 779-803. https://jsm.arak.iau.ir/article_545719.html. 
  58. Shiva Samhitha, S., Raghavendra, G., Quezada, C. and Hima Bindu, P. (2022), "Green synthesized TiO2 nanoparticles for anticancer applications: Mini review", Mater. Today Proc., 54, 765-770. https://doi.org/10.1016/j.matpr.2021.11.073. 
  59. Shivanian, E., Ghadiri, M. and Shafiei, N. (2017), "Influence of size effect on flapwise vibration behavior of rotary microbeam and its analysis through spectral meshless radial point interpolation", Appl. Phys. A, 123(5), 329. https://doi.org/10.1007/s00339-017-0955-9. 
  60. Soltanieh, G., Yam Michael, C.H., Zhang, J.Z. and Ke, K. (2022), "Closed-form solution for the buckling behavior of the delaminated FRP plates with a rectangular hole using super-elastic SMA stitches", Struct. Eng. Mech., 81(1), 39-50. https://doi.org/10.12989/SEM.2022.81.1.039. 
  61. Srivastava, S., Bhargava, A., Srivastava, S. and Bhargava, A. (2022), "Green nanotechnology: An overview", Green Nanopart. Future Nanobiotech., 1-13. https://doi.org/10.1007/978-981-16-7106-7_1. 
  62. Su, Y., Shen, Z., Long, X., Chen, C., Qi, L. and Chao, X. (2023), "Gaussian filtering method of evaluating the elastic/elastoplastic properties of sintered nanocomposites with quasi-continuous volume distribution", Mater. Sci. Eng., 872, 145001. https://doi.org/10.1016/j.msea.2023.145001. 
  63. Sunny, N.E., Mathew, S.S., Chandel, N., Saravanan, P., Rajeshkannan, R., Rajasimman, M., Vasseghian, Y., Rajamohan, N. and Kumar, S.V. (2022), "Green synthesis of titanium dioxide nanoparticles using plant biomass and their applications- A review", Chemosphere, 300, 134612. https://doi.org/10.1016/j.chemosphere.2022.134612. 
  64. van Haastregt, J.C.M., Everink, I.H.J., Schols, J.M.G.A., Grund, S., Gordon, A.L., Poot, E.P., Martin, F.C., O,Neill, D., Petrovic, M., Bachmann, S., van Balen, R., van Dam van Isselt, L., Dockery, F., Holstege, M.S., Landi, F., Perez, L.M., Roquer, E., Smalbrugge, M. and Achterberg, W.P. (2022), "Management of post-acute COVID-19 patients in geriatric rehabilitation: EuGMS guidance", Eur. Geriatr. Med., 13(1), 291-304. https://doi.org/10.1007/s41999-021-00575-4. 
  65. Waddell, G. and Burton, A.K. (2005), "Concepts of rehabilitation for the management of low back pain", Best Pract. Res. Clin. Rheumatol., 19(4), 655-670. https://doi.org/10.1016/j.berh.2005.03.008. 
  66. Wang, H., Zandi, Y., Gholizadeh, M. and Issakhov, A. (2021), "Buckling of porosity-dependent bi-directional FG nanotube using numerical method", Adv. Nano Res., 10(5), 493-507. https://doi.org/10.12989/anr.2021.10.5.493. 
  67. Wang, J. and Zhuang, S. (2022), "Chitosan-based materials: Preparation, modification and application", J. Clean. Prod., 355, 131825. https://doi.org/10.1016/j.jclepro.2022.131825. 
  68. Wang, P., Gao, Z., Pan, F., Moradi, Z., Mahmoudi, T. and Khadimallah, M.A. (2022), "A couple of GDQM and iteration techniques for the linear and nonlinear buckling of bidirectional functionally graded nanotubes based on the nonlocal strain gradient theory and high-order beam theory", Eng. Anal. Bound. Elem., 143, 124-136. https://doi.org/10.1016/j.enganabound.2022.06.007. 
  69. Wei, F., Zhang, L., Niu, B. and Zong, G. (2024), "Adaptive decentralized fixed-time neural control for constrained strong interconnected nonlinear systems with input quantization", Int. J. Robust Nonlinear Contr., n/a(n/a). https://doi.org/10.1002/rnc.7497. 
  70. Wu, J., Zheng, J., Sun, G. and Chang, X. (2022), "Experimental and numerical analyses on axial cyclic behavior of H-section aluminium alloy members", Struct. Eng. Mech., 81(1), 11-28. https://doi.org/10.12989/SEM.2022.81.1.011. 
  71. Wu, X., Zhao, N., Ding, S., Wang, H. and Zhao, X. (2024), "Distributed event-triggered output-feedback time-varying formation fault-tolerant control for nonlinear multi-agent systems", IEEE T. Autom. Sci. Eng., 1-12. https://doi.org/10.1109/TASE.2024.3400325. 
  72. Xia, K., Li, Z. and Zhou, X. (2019), "Ultrasensitive detection of a variety of analytical targets based on a functionalized low-resistance AuNPs/β-Ni(OH)2 Nanosheets/Ni foam sensing platform", Adv. Funct. Mater., 29(39), 1904922. https://doi.org/10.1002/adfm.201904922. 
  73. Xing, Y., Fan, X., Li, X., Xu, Q., Tang, J., Wu, L., Wang, Q., Bi, X. and Liu, X. (2023), "Green synthesized TiO2 nanoparticles: Structural characterization and photoinduced antifungal activity against P. steckii", J. Food Sci., 88(1), 328-340. https://doi.org/10.1111/1750-3841.16419. 
  74. Yan, C., Zhang, T., Zheng, T. and Mahmoudi, T. (2024), "Stability characteristic of bi-directional FG nano cylindrical imperfect composite: Improving the performance of sports bikes using carbon nanotubes", Steel Compos. Struct., 50(4), 459-474. https://doi.org/10.12989/scs.2024.50.4.459. 
  75. Yang, R., Jia, A., Hu, Q., Guo, X. and Sun, M. (2020), "Particle size effect on water vapor sorption measurement of organic shale: One example from Dongyuemiao Member of Lower Jurassic Ziliujing Formation in Jiannan Area of China", Adv. Geo-Energy Res., 4(2), 207-218. 
  76. Younis, A.B., Haddad, Y., Kosaristanova, L. and Smerkova, K. (2022), "Titanium dioxide nanoparticles: Recent progress in antimicrobial applications", WIREs Nanomed. Nanobiotech., n/a(n/a), e1860. https://doi.org/10.1002/wnan.1860. 
  77. Zavasnik, J., Sestan, A. and Shvalya, V. (2021), Chapter Seven - Microscopic techniques for the characterisation of metal-based nanoparticles, Elsevier. 
  78. Zhang, C., Zhu, D., Luo, Q., Liu, L., Liu, D., Yan, L. and Zhang, Y. (2017), "Major factors controlling fracture development in the Middle Permian Lucaogou Formation tight oil reservoir, Junggar Basin, NW China", J. Asian Earth Sci., 146, 279-295. https://doi.org/10.1016/j.jseaes.2017.04.032. 
  79. Zhang, C., Zhang, X., Santosh, M., Liu, D.D., Ma, C., Zeng, J.H., Jiang, S., Luo, Q., Kong, X.Y. and Liu, L.F. (2020a), "Zircon Hf-O-Li isotopes of granitoids from the Central Asian Orogenic Belt: Implications for supercontinent evolution", Gondwana Res., 83, 132-140. https://doi.org/10.1016/j.gr.2020.02.003. 
  80. Zhang, K., Jia, C., Song, Y., Jiang, S., Jiang, Z., Wen, M., Huang, Y., Liu, X., Jiang, T., Peng, J., Wang, X., Xia, Q., Li, B., Li, X. and Liu, T. (2020b), "Analysis of Lower Cambrian shale gas composition, source and accumulation pattern in different tectonic backgrounds: A case study of Weiyuan Block in the Upper Yangtze region and Xiuwu Basin in the Lower Yangtze region", Fuel, 263, 115978. https://doi.org/10.1016/j.fuel.2019.115978. 
  81. Zhang, P., Song, J. and Mahmoudi, T. (2023a), "Simulation and modeling for stability analysis of functionally graded non-uniform pipes with porosity-dependent properties", Steel Compos. Struct., 48(2), 235-250. https://doi.org/10.12989/scs.2023.48.2.235. 
  82. Zhang, X., Li, J., Cui, Y., Habibi, M., Ali, H.E., Albaijan, I. and Mahmoudi, T. (2023b), "Static analysis of 2D-FG nonlocal porous tube using gradient strain theory and based on the first and higher-order beam theory", Steel Compos. Struct., 49(3), 293-306. https://doi.org/10.12989/scs.2023.49.3.293. 
  83. Zhang, Z., Du, J. and Mahmoudi, T. (2023c), "Green synthesis of silver nanoparticles to the microbiological corrosion deterrence of oil and gas pipelines buried in the soil", Adv. Nano Res., 15(4), 355-366. https://doi.org/10.12989/anr.2023.15.4.355. 
  84. Zhao, J. and Yu, Z. (2021), "On the modeling and simulation of the nonlinear dynamic response of NEMS via a couple of nonlocal strain gradient theory and classical beam theory", Adv. Nano Res., 11(5), 547-563. https://doi.org/10.12989/anr.2021.11.5.547. 
  85. Zhong, Y. and Liang, X. (2022), "Using CNN-VGG 16 to detect the tennis motion tracking by information entropy and unascertained measurement theory", Adv. Nano Res., 12(2), 223. https://doi.org/10.12989/anr.2022.12.2.223.