• Title/Summary/Keyword: antiferromagnetic

Search Result 244, Processing Time 0.06 seconds

ESR and Magnetization Study of $La_0.7Ca_0.3MnO_3$

  • Joh, Keon Woo;Lee, Chang Hoon;Lee, Cheol Eui;Jeong, Yoon Hee
    • Journal of Magnetics
    • /
    • v.5 no.1
    • /
    • pp.9-12
    • /
    • 2000
  • Electron spin resonance and magnetization measurements were carried out on $La_0.7Ca_0.3MnO_3$ in the ferromagnetic as well as paramagnetic phases. Evidence of an inhomogeneous magnetic structure, consisting of ferro-magnetic microregions embedded in an antiferromagnetic matrix near $T_c$, as well as similar local magnetic structures above and below $T_c$, were found.

  • PDF

Electron Paramagnetic Resonance Study of Al-incorporated ZnO:Mn Diluted Magnetic Semiconductors

  • Park, Jun Kue;Lee, K.W.;Choi, D.M.;Lee, Cheol Eui
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1884-1888
    • /
    • 2018
  • We have employed electron paramagnetic resonance spectroscopy and magnetization measurements in order to study the effect of Al-incorporation on the magnetic interactions in ZnO:Mn diluted magnetic semiconductors. Al-doping is shown to decrease the antiferromagnetic correlation and to increase the ferromagnetic interaction, which is attributed to the hydrogen-mediated ferromagnetic Mn complexes in our Mn-doped ZnO samples.

Effect of Ni dopant on the multiferroicity of BiFeO3 ceramic

  • Hwang, J.S.;Yoo, Y.J.;Kang, J.H.;Lee, K.H.;Lee, B.W.;Park, S.Y.;Lee, Y.P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.139.1-139.1
    • /
    • 2016
  • Multiferroic materials are of great interest because of its potential applications in the design of devices combining magnetic, electronic and optical functionalities. Among various multiferroic materials, $BiFeO_3$(BFO) is known to be one of the intensively focused mainly due to the possibility of multiferroism at device working temperature (> $200^{\circ}C$). However, leakage current and weak polarization resulting from oxygen deficiency and crystalline defect should be resolved. Furthermore the magnetic ordering of pure BFO mainly prefers to have antiferromagnetic coupling. Up to now many attempts have been performed to improve the ferromagnetic and the ferroelectric properties of BFO by doping. In this work, we investigated the effects of Ni substitution on the multiferroism of bulk BFO. Four BFO samples (a pure BFO and three Ni-doped BFO's; $BiFe_{0.99}Ni_{0.01}O_3$, $BiFe_{0.98}Ni_{0.02}O_3$ and $BiFe_{0.97}Ni_{0.03}O_3$) were synthesized by the standard solid-state reaction and rapid sintering technique. The XRD results reveal that Ni atoms are substituted into Fe-sites and give rise to phase transition of cubic to rhombohedal. By using vibrating sample magnetometer and standard ferroelectric tester, the multiferroic properties at room temperature were characterized. We found that the magnetic moment of Ni-doped BFO turned out to be maximized for 3% of Ni dopant.

  • PDF

Electronic Structure and Magnetism of (3d, 4d)-Pd Alloyed c(2×2) Monolayers (3d 및 4d 전이금속과 Pd가 c(2×2) 합금을 이룬 단층의 자성에 대한 제일원리 연구)

  • Kim, Dong-Chul;Choi, Chang-Sik
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.3
    • /
    • pp.83-88
    • /
    • 2010
  • We investigated the electronic structure and magnetism of the (3d, 4d)-Pd alloyed c($2{\times}2$) monolayer systems, by use of the FLAPW band method. For comparison, pure 3d- and 4d-transition metal monolayers are also considered. We found that the antiferromagnetic configuration of pure V monolayers is sustained in the V-Pd alloy system, while the Ti-Pd alloy system is changed to antiferromagnetic configuration from the ferromagnetic state in pure Ti monolayer. The 4d TM (Mo, Ru, Rh)-Pd monolayers are found to be stable in ferromagnetic configurations. The magnetic moments of Ru and Rh atoms in Ru-Pd and Rh-Pd systems are almost same with those of pure Ru and Rh monolayers, while the magnetic moment of Mo atom is increased to $2.98\;{\mu}_B$ in Mo-Pd alloyed system from the value of Mo monolayer, $0.02\;{\mu}_B$.

3-D Hydrogen-Bonded Frameworks of Two Metal Complexes with Chelidamic Acid: Syntheses, Structures and Magnetism

  • Zhou, Guo-Wei;Guo, Guo-Cong;Liu, Bin;Wang, Ming-Sheng;Cai, Li-Zhen;Huang, Jin-Shun
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.676-680
    • /
    • 2004
  • Complexes M($C_7H_2NO_5)3H_2O{\cdot}H_2O{\cdot}0.25MeCN$ (M=Ni, Co) were crystallized from the reactions of $Ni(CH_3COO)_2{\cdot}4H_2O\;or\;Co(CH_3COO)_2{\cdot}2H_2O$ with KSCN and 2,6-dicarboxy-4-hydroxypyridine (chelidamic acid). The structures were characterized by X-ray crystallography. The crystal structures of 1 and 2 show a distorted octahedral coordination geometry around the M(II) ions, which are chelated by one nitrogen atom and two oxygen atoms of the chelidamic acid and three water molecules. Complexes 1 and 2 display the hydrogen-bonded 3D framework. The magnetic behavior of 2 exhibits antiferromagnetic interaction.

Magnetization Behavior of CoB/Ru/CoB Thin Film (CoB/Ru/CoB 박막 재료의 자화 거동 특성 분석)

  • Kim, Dong Young;Yoon, Seok Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.5
    • /
    • pp.154-158
    • /
    • 2013
  • We have analyzed the magnetization curves measures by using VSM and MOKE in synthetic antiferromagnetic coupled CoB/Ru/CoB thin film. The measured results were compared with calculated ones by Stoner-Wohlfarth model based on the magnetization behavior of two ferromagnetic layers ($M_1$, $M_2$). The calculated total magnetization ($M_{tot}=M_1+M_2$) and single layer magnetization($M_1$) behaviors were compared with measured results by using VSM and MOKE, respectively. The total magnetization curve ($M_{tot}=M_1+M_2$) showed reversible magnetization behavior with flopping field of about 50 Oe. While single layer magnetization ($M_1$) behaviors showed irreversible magnetization behavior in the field range of $H_F$ < H < $H_F$. These magnetization behaviors were explained by the angle difference between magnetization directions of two ferromagnetic layers in SAF sample.

Magnetization Process in Vortex-imprinted Ni80Fe20/Ir20Mn80 Square Elements

  • Xu, H.;Kolthammer, J.;Rudge, J.;Girgis, E.;Choi, B.C.;Hong, Y.K.;Abo, G.;Speliotis, Th.;Niarchos, D.
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.83-87
    • /
    • 2011
  • The vortex-driven magnetization process of micron-sized, exchange-coupled square elements with composition of $Ni_{80}Fe_{20}$ (12 nm)/$Ir_{20}Mn_{80}$ (5 nm) is investigated. The exchange-bias is introduced by field-cooling through the blocking temperature (TB) of the system, whereby Landau-shaped vortex states of the $Ni_{80}Fe_{20}$ layer are imprinted into the $Ir_{20}Mn_{80}$. In the case of zero-field cooling, the exchange-coupling at the ferromagnetic/antiferromagnetic interface significantly enhances the vortex stability by increasing the nucleation and annihilation fields, while reducing coercivity and remanence. For the field-cooled elements, the hysteresis loops are shifted along the cooling field axis. The loop shift is attributed to the imprinting of displaced vortex state of $Ni_{80}Fe_{20}$ into $Ir_{20}Mn_{80}$, which leads to asymmetric effective local pinning fields at the interface. The asymmetry of the hysteresis loop and the strength of the exchange-bias field can be tuned by varying the strength of cooling field. Micromagnetic modeling reproduces the experimentally observed vortex-driven magnetization process if the local pinning fields induced by exchange-coupling of the ferromagnetic and antiferromagnetic layers are taken into account.

Magnetic Exchange Interactions in a 2D Grid-like Copper(II) Polymer with Bridging End-on Cyanato and Pyrazine Ligands: A DFT Study

  • Kang, Dae-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1704-1710
    • /
    • 2010
  • The structure of a 2D grid-like copper(II) complex [Cu$(NCO)_2$(pyz)](pyz=pyrazine) (1) consists of 1D chains of Cu-pyz units connected by double end-on (EO) cyanato bridges. Each Cu(II) ion has a distorted octahedral coordination, completed by the four EO cyanato and two pyrazine ligands. Magnetic interactions through EO cyanato and pyrazine bridges in 1 are discussed on the basis of DFT broken-symmetry calculations at the B3LYP level. For model dicopper(II) complexes I (bridged by cyanato) and II (bridged by pyrazine), electronic structure calculations reproduce very well the experimental couplings for the S = 1/2 ferromagnetic and antiferromagnetic exchange-coupled 2D system: the calculated exchange parameters J are +1.25 $cm^{-1}$ and -3.07 $cm^{-1}$ for I and II, respectively. The $\sigma$ orbital interactions between the Cu $x^2-y^2$ magnetic orbitals and the nitrogen lone-pair orbitals of pyrazine are analyzed from the viewpoint of through-bond interaction. The energy splitting of 0.106 eV between two SOMOs indicates that the superexchange interaction should be antiferromagnetic in II. On the other hand, there are no bridging orbitals that efficiently connect the two copper(II) magnetic orbitals in I because the HOMOs of the basal-apical NCO bridge do not play a role in the formation of overlap interaction pathway. The energy separation in the pair of SOMOs of I is calculated to be very small (0.054 eV). This result is consistent with the occurrence of weakly ferromagnetic properties in I.