Browse > Article
http://dx.doi.org/10.5012/bkcs.2010.31.6.1704

Magnetic Exchange Interactions in a 2D Grid-like Copper(II) Polymer with Bridging End-on Cyanato and Pyrazine Ligands: A DFT Study  

Kang, Dae-Bok (Department of Chemistry, Kyungsung University)
Publication Information
Abstract
The structure of a 2D grid-like copper(II) complex [Cu$(NCO)_2$(pyz)](pyz=pyrazine) (1) consists of 1D chains of Cu-pyz units connected by double end-on (EO) cyanato bridges. Each Cu(II) ion has a distorted octahedral coordination, completed by the four EO cyanato and two pyrazine ligands. Magnetic interactions through EO cyanato and pyrazine bridges in 1 are discussed on the basis of DFT broken-symmetry calculations at the B3LYP level. For model dicopper(II) complexes I (bridged by cyanato) and II (bridged by pyrazine), electronic structure calculations reproduce very well the experimental couplings for the S = 1/2 ferromagnetic and antiferromagnetic exchange-coupled 2D system: the calculated exchange parameters J are +1.25 $cm^{-1}$ and -3.07 $cm^{-1}$ for I and II, respectively. The $\sigma$ orbital interactions between the Cu $x^2-y^2$ magnetic orbitals and the nitrogen lone-pair orbitals of pyrazine are analyzed from the viewpoint of through-bond interaction. The energy splitting of 0.106 eV between two SOMOs indicates that the superexchange interaction should be antiferromagnetic in II. On the other hand, there are no bridging orbitals that efficiently connect the two copper(II) magnetic orbitals in I because the HOMOs of the basal-apical NCO bridge do not play a role in the formation of overlap interaction pathway. The energy separation in the pair of SOMOs of I is calculated to be very small (0.054 eV). This result is consistent with the occurrence of weakly ferromagnetic properties in I.
Keywords
Molecular magnetism; Density functional theory; Superexchange interaction;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
  • Reference
1 Haynes, J. S.; Rettig, S. J.; Sams, J. R.; Thompson, R. C.; Trotter, J. Can. J. Chem. 1987, 65, 420.   DOI
2 Suarez-Varela, J.; Colacio, E.; Romerosa, A.; Avila-Roson, J. C.; Hidalgo, M. A.; Romero, J. Inorg. Chim. Acta 1994, 217, 39.   DOI
3 Grove, H.; Sletten, J.; Julve, M.; Lloret, F. J. Chem. Soc. Dalton Trans. 2000, 515.
4 Okubo, T.; Kondo, M.; Kitawaga, S. Synth. Met. 1997, 85, 1661.   DOI
5 Graf, M.; Stoeckli-Evans, H.; Escuer, A.; Vicente, R. Inorg. Chim. Acta 1997, 257, 89.   DOI
6 Burkholder, E.; Golub, V.; O'Connor, C. J.; Zubieta, J. Inorg. Chem. 2003, 42, 6729.   DOI
7 Carranza, J.; Sletten, J.; Brennan, C.; Lloret, F.; Cano, J.; Julve, M. Dalton Trans. 2004, 3997.
8 Cano, J.; Ruiz, E.; Alvarez, S.; Verdaguer, M. Comments Inorg. Chem. 1998, 20, 27.   DOI
9 Schafer, A.; Huber, C.; Ahlrichs, R. J. Chem. Phys. 1994, 100, 5829.   DOI
10 Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 724.   DOI
11 Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257.   DOI
12 Hariharan, P. C.; Pople, J. A. Mol. Phys. 1974, 27, 209.   DOI   ScienceOn
13 Gordon, M. S. Chem. Phys. Lett. 1980, 76, 163.   DOI
14 Comba, P.; Martin, B. J. Phys. Chem. A 2009, 113, 6751.   DOI
15 Alvarez, S.; Julve, M.; Verdaguer, M. Inorg. Chem. 1990, 29, 4500.   DOI
16 Choi, J.; Woodward, J. D.; Musfeldt, J. L.; Landee, C. P.; Turnbull, M. M. Chem. Mater. 2003, 15, 2797.   DOI
17 Bordallo, H. N.; Chapon, L.; Manson, J. L.; Ling, C. D.; Qualls, J. S.; Hall, D.; Argyriou, D. N. Polyhedron 2003, 22, 2045.   DOI
18 Jones, B. R.; Varughese, P. A.; Olejniczak, I.; Pigos, J. M.; Musfeldt, J. L.; Landee, C. P.; Turnbull, M. M.; Carr, G. L. Chem. Mater. 2001, 13, 2127.   DOI
19 Blaudeau, J.-P.; McGrath, M. P.; Curtiss, L. A.; Radom, L. J. Chem. Phys. 1997, 107, 5016.   DOI
20 Hariharan, P. C.; Pople, J. A. J. Chem. Phys. 1973, 82, 213.
21 Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; DeFrees, D. J.; Pople, J. A.; Gordon, M. S. J. Chem. Phys. 1982, 77, 3654.   DOI
22 Binning, R. C., Jr.; Curtiss, L. A. J. Comput. Chem. 1990, 11, 1206.   DOI
23 Rassolov, V. A.; Pople, J. A.; Ratner, M. A.; Windus, T. L. J. Chem. Phys. 1998, 109, 1223.   DOI
24 Rassolov, V. A.; Ratner, M. A.; Pople, J. A.; Redfern, P. C.; Curtiss, L. A. J. Comput. Chem. 2001, 22, 976.   DOI
25 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B. Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03; Gaussian Inc.: Wallingford, CT, 2003.
26 Bordallo, H. N.; Chapon, L.; Manson, J. L.; Ling, C. D.; Qualls, J. S.; Hall, D.; Argyriou, D. Polyhedron 2003, 22, 2045.   DOI
27 Hay, P. J.; Thibeault, J. C.; Hoffman, R. J. Am. Chem. Soc. 1975, 97, 4884.   DOI
28 Manson, J. L.; Huang, Q. Z.; Lynn, J. W.; Koo, H. J.; Whangbo, M. H.; Bateman, R.; Otsuka, T.; Wada, N.; Argyriou, D. N.; Miller, J. S. J. Am. Chem. Soc. 2001, 13, 162.
29 Wriedt, M.; Nather, C. Z. Anorg. Allg. Chem. 2009, 635, 1115.   DOI
30 Sun, H.-L.; Ma, B.-Q.; Gao, S.; Su, G. Chem. Commun. 2001, 24, 2586.
31 Dong, W.; Ouyang, Y.; Liao, D.-Z.; Yan, S.-P.; Cheng, P.; Jiang, Z.-H. Inorg. Chim. Acta 2006, 359, 3363.   DOI
32 Parr, R. G.; Yang, W. Density Functional Theory of Atoms and Molecules; Oxford University Press: New York, 1989.
33 Ciofini, I.; Daul, C. A. Coord. Chem. Rev. 2003, 238-239, 187.   DOI
34 Noodleman, L. J. Chem. Phys. 1981, 74, 5737.   DOI
35 Noodleman, L.; Davidson, E. R. Chem. Phys. 1986, 109, 131.   DOI
36 Ruiz, E.; Cano, J.; Alvarez, S.; Alemany, P. J. Comput. Chem. 1999, 20, 1391.   DOI
37 Becke, A. D. J. Chem. Phys. 1993, 98, 5648.   DOI
38 Darriet, J.; Haddad, M. S.; Duester, E. N.; Hendrickson, D. N. Inorg. Chem. 1979, 18, 2679.   DOI
39 Real, J. A.; Munno, G. D.; Munoz, M. C.; Julve, M. Inorg. Chem. 1991, 30, 2701.   DOI
40 Becke, A. D. Phys. Rev. A 1988, 38, 3098.   DOI
41 Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.   DOI
42 Schafer, A.; Horn, H.; Ahlrichs, R. J. Chem. Phys. 1992, 97, 2571.   DOI
43 Boudalis, A. K.; Donnadieu, B.; Nastopoulos, V.; Modesto Clemente-Juan, J.; Mari, A.; Sanakis, Y.; Tuchagues, J.-P.; Perlepes, S. P. Angew. Chem., Int. Ed. 2004, 43, 2266.   DOI
44 Murugesu, M.; Habrych, M.; Wernsdorfer, W.; Abboud, K. A.; Christou, G. J. Am. Chem. Soc. 2004, 126, 4766.   DOI
45 Talukder, P.; Datta, A.; Mitra, S.; Rosair, G.; El Fallah, M. S.; Ribas, J. Dalton Trans. 2004, 4161.
46 Abu-Youssef, M. A. M.; Escuer, A.; Goher, M. A. S.; Mautner, F. A.; Reiss, G. J.; Vicente, R. Angew. Chem., Int. Ed. 2000, 39, 1624.   DOI
47 Arriortua, M. I.; Cortes, R.; Mesa, J. L.; Lezama, L.; Rojo, T.; Villeneuve, G. Transition Met. Chem. 1988, 13, 371.   DOI
48 Clemente-Juan, J. M.; Mackiewicz, C.; Verelst, M.; Dahan, F.; Bousseksou, A.; Sanakis, Y.; Tuchagues, J. P. Inorg. Chem. 2002, 41, 1478.   DOI
49 Carranza, J.; Sletten, J.; Lloret, F.; Julve, M. J. Mol. Struct. 2008, 890, 31.   DOI
50 Youngme, S.; Phatchimkun, J.; Suksangpanya, U.; Pakawatchai, C.; van Albada, G. A.; Reedijk, J. Inorg. Chem. Commun. 2005, 8, 882.   DOI
51 Grove, H.; Julve, M.; Lloret, F.; Kruger, P. E.; Tornroos, K. W.; Sletten, J. Inorg. Chim. Acta 2001, 325, 115.   DOI
52 Escuer, A.; Font-Bardia, M.; Penalba, E.; Solans, X.; Vicente, R. Inorg. Chim. Acta 1999, 286, 189.   DOI   ScienceOn
53 Diaz, C.; Ribas, J.; Salah El Fallah, M.; Solans, X.; Font-Bardia, M. Inorg. Chim. Acta 2001, 312, 1.   DOI
54 Chen, Z.-N.; Zhang, H.-X.; Yu, H.-B.; Zheng, K.-C.; Cai, H.; Kang, B.-S. J. Chem. Soc. Dalton Trans. 1998, 1133.
55 Santoro, A.; Mighell, A. D.; Reimann, C. W. Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem.1970, 26, 979.   DOI
56 Carreck, P. W.; Goldstein, M.; MacPartlin, E. M.; Unsworth, W. D. J. Chem. Soc. Chem. Commun. 1971, 1634.
57 Carlin, R. L.; Van Duyneveldt, A. J. Magnetic Properties of Transition Metal Compounds; Springer-Verlag: New York, 1977.
58 Miller, J. S.; Drillon, M. Magnetism: Molecules to Materials; Wiley-VCH: Weinheim, 2002-2005; Vol. I-V.
59 Carlin, R. L. Magnetochemistry; Springer-Verlag: Berlin-Heidelberg, 1986.
60 Kahn, O. Molecular Magnetism; VCH: New York, 1993.
61 Thompson, L. K. Coord. Chem. Rev. 2005, 249, 2549-2730.   DOI
62 Entley, W. R.; Girolami, G. S. Science 1995, 268, 397.   DOI   ScienceOn
63 Escuer, A.; Aromi, G. Eur. J. Inorg. Chem. 2006, 4721.
64 Ribas, J.; Escuer, A.; Monfort, M.; Vicente, R.; Cortes, R.; Lezama, L.; Rojo, T. Coord. Chem. Rev. 1999, 195, 1027.   DOI
65 Karmakar, T. K.; Ghosh, B. K.; Usman, A.; Fun, H. K.; Riviere, E.; Mallah, T.; Aromi, G.; Chandra, S. K. Inorg. Chem. 2005, 44, 2391.   DOI
66 Tandon, S. S.; Thompson, L. K.; Manuel, M. E.; Bridson, J. N. Inorg. Chem. 1994, 33, 5555.   DOI
67 Ako, A. M.; Hewitt, I. J.; Mereacre, V.; Clerac, R.; Wernsdorfer, W.; Anson, C. E.; Powell, A. K. Angew. Chem., Int. Ed. 2006, 45, 4926.   DOI
68 Aromi, G.; Parsons, S.; Wernsdorfer, W.; Brechin, E. K.; McInnes, E. J. L. Chem. Commun. 2005, 5038.
69 Bell, A.; Aromi, G.; Teat, S. J.; Wernsdorfer, W.; Winpenny, R. E. P. Chem. Commun. 2005, 2808.