• Title/Summary/Keyword: antiferromagnetic

Search Result 244, Processing Time 0.028 seconds

Enhancement of Crystallinity and Exchange Bias Field in NiFe/FeMn/NiFe Trilayer with Si Buffer Layer Fabricated by Ion-Beam Deposition (이온 빔 증착법으로 제작한 NiFe/FeMn/NiFe 3층박막의 버퍼층 Si에 따른 결정성 및 교환결합세기 향상)

  • Kim, Bo-Kyung;Kim, Ji-Hoon;Hwang, Do-Guwn;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.4
    • /
    • pp.132-136
    • /
    • 2002
  • Enhancement of crystallinity and exchange bias characteristics for NiFe/FeMn/NiFe trilayer with Si buffer layer fabricated by ion-beam deposition were examined. A Si buffer layer promoted (111) texture of fcc crystallities in the initial growth region of NiFe layer deposited on it. FeMn layers deposited on Si/NiFe bilayer exhibited excellent (111) crystal texture. The antiferromagnetic FeMn layer between top and bottom NiFe films with the buffer Si 50 ${\AA}$-thick induced a large exchange coupling field Hex with a different dependence. It was found that H$\sub$ex/ of the bottom and top NiFe films with Si buffer layer revealed large value of about 110 Oe and 300 Oe, respectively. In the comparison of two Ta and Si buffer layers, the NiFe/FeMn/NiFe trilayer with Si could possess larger exchange coupling field and higher crystallinity.

Structure and Magnetic Properties of Cr2O3/CrO2 Nanoparticles Prepared by Reactive Laser Ablation and Oxidation under High Pressure of Oxygen

  • Si, P.Z.;Wang, X.L.;Xiao, X.F.;Chen, H.J.;Liu, X.Y.;Jiang, L.;Liu, J.J.;Jiao, Z.W.;Ge, H.L.
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.211-214
    • /
    • 2015
  • $Cr_2O_3$ nanoparticles were prepared via one-step reactive laser ablation of Cr in oxygen. The metastable $CrO_2$ phase was obtained through the subsequent oxidation of $Cr_2O_3$ nanoparticles under $O_2$ with gas pressures of up to 40 MPa. The as-prepared $Cr_2O_3$ nanoparticles are spherical or rectangular in shape with sizes ranging from 20 nm to 50 nm. High oxygen pressure annealing is effective in producing meta-stable $CrO_2$ from as-dried $Cr_2O_3$ nanoparticles, and the $Cr_2O_3$ nanoparticles exhibit a weak ferromagnetic behavior with an exchange bias of up to 11 mT that can be ascribed to the interfacial exchange coupling between uncompensated surface spins and the antiferromagnetic core. The $Cr_2O_3/CrO_2$ nanoparticles exhibit an enhanced saturation magnetization and a reduced exchange bias with an increasing faction of $CrO_2$ due to the elimination of uncompensated surface spins over the $Cr_2O_3$ nanoparticles when exposed to a high pressure of $O_2$ and/or possible phase segregation that results in a smaller grain size for both $Cr_2O_3$ and $CrO_2$.

Interfacial Properties of Antiferromagnetically-coupled Fe/Si Multilayeres Films

  • Kim, K.W.;Y.V.Kudryavtsev;J.Y.Rhee;J.Dubowik;Lee, Y.P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.168-168
    • /
    • 1999
  • Recently, Fe/Si multilayered films (MLF) have been a focus of interest due to the strong antiferromagnetic (AF) coupling observed in such kind of MLF originates from the same nature as in the metal/metal MLF. In particular, a question of whether the spacer layer in the Fe/Si MLF is metallic or semiconducting is of interest. In spite of various experimental techniques envolved in the study, the chemical composition and the properties of the interfacial regions in the MLF exhibiting the AF coupling is still questionable. The nature of the AF coupling and the interfacial properties of Fe/Si MLF are investigated in this study. A series of Fe/Si MLF with a fixed nominal thickness of Fe(3nm) and a variable thickness of Sk(1.0-2.2nm) were deposited by RF-sputtering onto glass substrates at room temperature. The atomic structures and the actual sublayer thicknesses of the Fe/Si MLF are investigated by using x-ray diffraction. The magnetic-field dependence of the equatorial Kerr effect clearly shows an appearance of the AF coupling between Fe sublayers at tsi = 1.5 - 1.8 nm. the drastic discrepancies between the experimental magnetooptical (MO) and optical properties, and based on the assumption of sharp interfaces between Fe and Si sublayers leads to a conclusion that pure si is absent in the AF-coupled Fe/Si MLF. Introducing in the model nonmagnetic semiconducting FeSi alloy layers between Fe and Si sublayers or as spacer between pure Fe sublayers only slightly improves the agreement between model and experiment. A reasonable agreement between experimental and simulated MO spectra was reached with using the fitted optical properties for the spacer with a typical metallic type of behavior. The results of the magnetic properties measured by vibrating sample magnetometer and magnetic circular dichroism are also analyzed in connection with the MO and optical properties.

  • PDF

Magnetic Properties and Structures of Rare earth-Aluminum Compounds $RAI_{2}$ (희토류원소-알루미늄 화합물 $RAI_{2}$의 자기적성질 및 구조)

  • Moo-hee Lee;Seung-wook Um;Tae-kyung Park
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.3
    • /
    • pp.185-190
    • /
    • 1995
  • Rare earth-aluminum intermetallic compounds $RAI_{2}$ (R ; Lu, Ce, Gd) are prepared by the arc-melt method and the magnetic properties and electronic structures are investigated by magnetic susceptiptibiliy measurements using SQUID magnetometer. The magnetic suceptibiliyof $LuAl_{2}$ is weakly temperature dependent and shows a Pauli susceptibility of $10.1{\times}10^{-5}$ emu/mol, which means 3.2 states/eV/formula unit. On the other hand, the susceptibility data of $CeAl_{2}$ and $GdAl_{2}$ show a Curie-Weiss behavior for paramagnets. The magnetization data at low temperatures confirm that $CeAl_{2}$ undergoes an antiferromagnetic phase transition near 4 K whereas $GdAl_{2}$ a ferromagnetic transition at 170 K. The distinctive magnetic behaviors of $RAI_{2}$ originate from the different 4f band filling.

  • PDF

Enhanced Magnetic Properties of BiFe1-$_xNi_xO_3$

  • Yoo, Y.J.;Hwang, J.S.;Park, J.S.;Kang, J.H.;Lee, B.W.;Lee, S.J.;Kim, K.W.;Lee, Y.P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.183-183
    • /
    • 2011
  • Multiferroic materials have been widely studied in recent years, because of their abundant physics and potential applications in the sensors, data storage, and spintronics. $BiFeO_3$ is one of the well-known single-phase multiferroic materials with $ABO_3$ structure and G-type antiferromagnetic behavior below the Neel temperature $T_N$ ~ 643 K, but the ferroelectric behavior below the Curie temperature $T_c$~1,103 K. In this study, the $BiFe_{1-x}Ni_xO_3$ (x=0 and 0.05) bulk ceramics were prepared by solid-state reaction and rapid sintering with high-purity $Bi_2O_32$, $Fe_3O_4$ and NiO powders. The powders of stoichiometric proportions were mixed, as in the previous investigations, and calcined at 450$^{\circ}C$ for $BiFe_{1-x}Ni_xO_3$ for 24 h. The obtained powders were grinded, and pressed into 5-mm-thick disks of 1/2-inch diameter. The disks were directly put into the oven, which has been heated up to 800$^{\circ}C$ and sintered in air for 20 min. The sintered disks were taken out from the oven and cooled to room temperature within several min. The phase of samples was checked at room temperature by powder x-ray diffraction using a Rigaku Miniflex diffractometer with Cu K${\alpha}$ radiation. The Raman measurements were carried out by employing a hand-made Raman spectrometer with 514.5-nm-excitation $Ar^+$ laser source under air ambient condition on a focused area of 1-${\mu}m$ diameter. The field-dependent magnetization measurements were performed with a superconducting quantum-interference-device magnetometer.

  • PDF

Magnetic properties of ferromagnetic-antiferromagnetic bi-layers with different spin configuration

  • Kim, Won-Dong;Park, Ju-Sang;Hwang, Chan-Yong;Wu, J.;Qiu, Z.Q.;Park, Myeong-Gyu;Kim, Jae-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.304-304
    • /
    • 2011
  • We investigated the effect of different spin direction of anti-ferromagnetic layer on the magnetic properties of ferromagnetic layer in Fe-NiO and Fe-CoO bi-layer systems. For Fe-NiO system, we prepared the clean MgO(001) surface half-covered with 20 nm Ag films as a substrate for magnetic layers. Then we grew NiO wedge layers on the substrate, and added 8 monolayer(ML) Fe layers on the wedge layer. We examined magnetic properties of the bi-layer system using the surface magnetic optical Kerr effect(SMOKE) and X-ray magnetic linear dichroism(XMLD). From SMOKE measurement we observed the coercivity enhancement due to the set-up of anti-ferromagnetic order of NiO films in both of the Fe/NiO/MgO(001) and Fe/NiO/Ag/MgO(001) system. The most remarkable results in our observation is that the coercivity enhancement of Fe/NiO/Ag/MgO(001) is much larger than that of Fe/NiO/MgO(001). XMLD experiments confirmed the out-of-plane spin direction of NiO layers in Fe/NiO/MgO(001) and in-plane spin-direction of NiO layers in Fe/NiO/Ag/MgO(001), and we concluded that the origin of large enhancement of coercivity is due to the strong parallel coupling between Fe layers and NiO layers. We also confirmed that this strong parallel coupling maintained across the thin Ag layer inserted between Fe and NiO layers. For Fe-CoO system, we prepared Fe/CoO/Ag(001) and Fe/CoO/MnO(001) systems and observed much larger coercivity enhancement in Fe/CoO/Ag(001).

  • PDF

One-dimensionally Ordered Array of Co and Fe Nanoclusters on Carburized-W(110) via Template Assisted Self-Assembly

  • Kim, Ji-Hyun;Yang, Serlun;Kim, Jae-Sung;Lukashev, Pavel;Rojas, Geoffrey;Enders, Axel;Sessi, Violetta;Honolka, Jan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.135-136
    • /
    • 2012
  • Carbon atoms near the surface of W(110) induce reconstructions such as $R(15{\times}12)$ -C/W(110) which consists of two characteristic parts, one square shaped and bright protrusion and two smaller ones. In the atomic resolution STM image, the bigger protrusion shows the periodicities of clean W(110), indicating that it is almost carbon poor region. The smaller protrusion contains hexagonal carbide surface layer of ${\alpha}$-W2C on W(110). Employing this carburized W(110) as templates, we grow Co and Fe clusters of less than ten atoms. Due to the selectivity of bonding sites, growth of larger cluster is highly unfavorable for Co and the size of clusters is very uniform. Since Co atoms prefer to sit on the bigger protrusion rather than smaller one, Co cluster can be arranged one-dimensionally in $R(15{\times}12)$-C/W(110) with quite uniform size distribution. However, Fe clusters sit on both sites without favored site, but still with uniform size distribution. On the other hand, Fe clusters can be grown with quasi one-dimensional order in $R(15{\times}3)$-C/W(110), which consists of only smaller protrusions. We investigate the magnetic properties of the ordered nano-sized clusters. Experiments using XMCD reveals little magnetic moment of Co cluster on $R(15{\times}12)$-C/W(110). This observation is consistent with the predictions of our first principles calculations that small Co clusters can be nonmagnetic or antiferromagnetic with low mean magnetic moment per atom.

  • PDF

Electronic and Magnetic Structure Calculations of Diiron Enzymes (이중 철 효소의 전자구조 및 자기구조 계산)

  • Park, Key Taeck
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.4
    • /
    • pp.106-110
    • /
    • 2015
  • We have studied electronic and magnetic structure of 2 kinds of diiron molecules using OpenMX method based on density functional method. The calculated density of states of diiron-2 is similar with that of diiron-4 because of equal number of 6 ligand atoms. The calculated total energy with antiferromagnetic spin configuration is lower than those of ferromagnetic configurations for both of them. The exchange interaction J of diiiron-4 between $Fe^{+3}$ atoms is one order larger than that of diiron-2, and the calculated J matches well with the experimental one. That comes from the short distance of Fe-O and the high O 2p energy levels. It derives a strong super exchange interaction. The angle of diiron-4 between Fe atoms is bigger than that of diiron-2. It also derives a strong super exchange interaction because of the ${\sigma}$-bond between Fe and O atoms.

Photoluminescence of the Single Crystal MnF2(1.5% EuF3) (단결정 MnF2(1.5% EuF3)의 Photoluminescence)

  • Kwon, Soon-Hyuk;Nahm, Kyun;Kim, Chul-Koo
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.1
    • /
    • pp.1-5
    • /
    • 2007
  • The 1R(Infra-Red) spectrum and PL(Photoluminescence) of the antiferromagnetic pure $MnF_2$ and the single crystal $MnF_2(1.5%\;EuF_3)$ with the rutile structures were measured. The detailed analysis of the measured PL data showed the differences of the optical property between the single crystal $MnF_2(1.5%\;EuF_3)$ and the pure $MnF_2$. It was found that the additional PL peak by the doping of the $EuF_3$ in $MnF_2$ is originated from the f-d transition of $Eu^{3+}$ from the temperature dependent intensity measurement.

The Hyperfine Interaction for the FeIn2S4 by Mössbauer Spectroscopy (뫼스바우어 효과를 통한 FeIn2S4에서의 Fe2+ 초미세 상호 작용 연구)

  • Son, Bae-Soon;Kim, Sam-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.1
    • /
    • pp.30-33
    • /
    • 2007
  • The $FeIn_2S_4$ exhibits an inverse spinel which Fe ions are occupied to the octahedral(B) site, while In ions are occupied to both the tetrahedral(A) and the octahedral(B) site. The $N\'{e}el$ temperature($T_N$) is determined to be 13 K. The effective moment of $FeIn_2S_4$ found to be $5.094{\mu}_B$ from the fit of Curie-Weiss inverse susceptibility for the temperature range over $T_N$, implying angular momentum contribution. The angular momentum contribution is shown in $M\"{o}ssbauer$ spectra for the antiferromagnetic ordering region($T{\leq}\;13K$), too. A weak $Fe^{2+}(B)-S^2-Fe^{2+}(B)$ interaction is responsible for a low $N\'{e}el$ temperature($T_N$) in $FeIn_2S_4$ system. The temperature dependence of electric quadrupole interaction is explained by z-axial crystalline field energy.