DOI QR코드

DOI QR Code

Structure and Magnetic Properties of Cr2O3/CrO2 Nanoparticles Prepared by Reactive Laser Ablation and Oxidation under High Pressure of Oxygen

  • Si, P.Z. (Zhejiang Key Lab of Magnetic Materials, or Department of Physics, China Jiliang University) ;
  • Wang, X.L. (Zhejiang Key Lab of Magnetic Materials, or Department of Physics, China Jiliang University) ;
  • Xiao, X.F. (Zhejiang Key Lab of Magnetic Materials, or Department of Physics, China Jiliang University) ;
  • Chen, H.J. (Zhejiang Key Lab of Magnetic Materials, or Department of Physics, China Jiliang University) ;
  • Liu, X.Y. (Faculty of Materials Science and Chemical Engineering, Ningbo University) ;
  • Jiang, L. (Zhejiang Key Lab of Magnetic Materials, or Department of Physics, China Jiliang University) ;
  • Liu, J.J. (Faculty of Materials Science and Chemical Engineering, Ningbo University) ;
  • Jiao, Z.W. (Zhejiang Key Lab of Magnetic Materials, or Department of Physics, China Jiliang University) ;
  • Ge, H.L. (Zhejiang Key Lab of Magnetic Materials, or Department of Physics, China Jiliang University)
  • Received : 2015.03.11
  • Accepted : 2015.06.22
  • Published : 2015.09.30

Abstract

$Cr_2O_3$ nanoparticles were prepared via one-step reactive laser ablation of Cr in oxygen. The metastable $CrO_2$ phase was obtained through the subsequent oxidation of $Cr_2O_3$ nanoparticles under $O_2$ with gas pressures of up to 40 MPa. The as-prepared $Cr_2O_3$ nanoparticles are spherical or rectangular in shape with sizes ranging from 20 nm to 50 nm. High oxygen pressure annealing is effective in producing meta-stable $CrO_2$ from as-dried $Cr_2O_3$ nanoparticles, and the $Cr_2O_3$ nanoparticles exhibit a weak ferromagnetic behavior with an exchange bias of up to 11 mT that can be ascribed to the interfacial exchange coupling between uncompensated surface spins and the antiferromagnetic core. The $Cr_2O_3/CrO_2$ nanoparticles exhibit an enhanced saturation magnetization and a reduced exchange bias with an increasing faction of $CrO_2$ due to the elimination of uncompensated surface spins over the $Cr_2O_3$ nanoparticles when exposed to a high pressure of $O_2$ and/or possible phase segregation that results in a smaller grain size for both $Cr_2O_3$ and $CrO_2$.

Keywords

References

  1. R. K. Gupta, E. Mitchell, J. Candler, P. K. Kahol, K. Ghosh, and L. Dong, Powder Technol. 254, 78 (2014). https://doi.org/10.1016/j.powtec.2014.01.014
  2. S. B. Wang, K. Murata, T. Hayakawa, S. Hamakawa, and K. Suzuki, Catal. Lett. 63, 59 (1999). https://doi.org/10.1023/A:1019084030344
  3. Z. Pei and Y. Zhang, Mater. Lett. 62, 504 (2008). https://doi.org/10.1016/j.matlet.2007.05.073
  4. W. S. Zhang, E. Bruck, Z. D. Zhang, O. Tegus, W. F. Li, P. Z. Si, D. Y. Geng, and K. H. J. Buschow, Physica B 358, 332 (2005). https://doi.org/10.1016/j.physb.2005.01.469
  5. D. Vollath, D. V. Szabo, and J. O. Willis, Mater. Lett. 29, 271 (1996). https://doi.org/10.1016/S0167-577X(96)00158-9
  6. Z. C. Zhong, R. H. Cheng, J. Bosley, P. A. Dowben, and D. J. Sellmyer, Appl. Surf. Sci. 181, 196 (2001). https://doi.org/10.1016/S0169-4332(01)00346-4
  7. C. H. Lin, S. Y. Chen, N. J. Ho, D. Gan, and P. Shen, J. Phys. Chem. Solids 70, 1505 (2009). https://doi.org/10.1016/j.jpcs.2009.09.015
  8. Q. Z. Dong, J. D. Hu, Z. X. Guo, J. S. Lian, J. W. Chen, and B. Chen, Appl. Surf. Sci. 202, 114 (2002). https://doi.org/10.1016/S0169-4332(02)00941-8
  9. S. Khamlich, Z. Y. Nuru, A. Bello, M. Fabiane, J. K. Dangbegnon, N. Manyala, and M. Maaza, J. Alloys Compd. 637, 219 (2015). https://doi.org/10.1016/j.jallcom.2015.02.155
  10. N. Patel, A. Santini, V. Bello, G. Mattei, and A. Miotello, Surf. Coat. Technol. 235, 784 (2013). https://doi.org/10.1016/j.surfcoat.2013.09.003
  11. M. Boutinguiza, B. Rodriguez-Gonzalez, J. del Val, R. Comesana, F. Lusquinos, and J. Pou, Appl. Surf. Sci. 258, 9484 (2012). https://doi.org/10.1016/j.apsusc.2012.05.148
  12. C. C. Lin, C. J. Chen, and R. K. Chiang, J. Cryst. Growth 338, 152 (2012). https://doi.org/10.1016/j.jcrysgro.2011.10.022
  13. A. Tomou, D. Gournis, I. Panagiotopoulos, Y. Huang, G. C. Hadjipanayis, and B. J. Kooi, J. Appl. Phys. 99, 123915 (2006). https://doi.org/10.1063/1.2207809
  14. R. H. Kodama, S. A. Makhlouf, and A. E. Berkowitz, Phys. Rev. Lett. 97, 1393 (1997).
  15. W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956). https://doi.org/10.1103/PhysRev.102.1413
  16. M. S. Anwar, M. Veldhorst, A. Brinkman, and J. Aarts, Appl. Phys. Lett. 100, 052602 (2012). https://doi.org/10.1063/1.3681138
  17. Y. Ji, G. J. Strijkers, F. Y. Yang, C. L. Chien, J. M. Byers, A. Anguelouch, Gang Xiao, and A. Gupta, Phys. Rev. Lett. 86, 5585 (2001). https://doi.org/10.1103/PhysRevLett.86.5585
  18. Q. Zhao, Y. B. Fan, G. H. Wen, Z. G. Liu, H. A. Ma, X. P. Jia, G. T. Zou, and Ho-kwang Mao, Mater. Lett. 64, 592 (2010). https://doi.org/10.1016/j.matlet.2009.12.011
  19. C. Aguilera, J. C. Gonzalez, A. Borras, D. Margineda, J. M. Gonzalez, A. R. Gonzalez-Elipe, and J. P. Espinos, Thin Solid Films 539, 1 (2013). https://doi.org/10.1016/j.tsf.2013.04.118
  20. Y. Shibasaki, F. Kanamaru, and M. Koizumi, Mat. Res. Bull. 5, 1051 (1970). https://doi.org/10.1016/0025-5408(70)90055-3
  21. Z. Pei, H. Xu, and Y. Zhang, Mater. Lett. 76, 205 (2012). https://doi.org/10.1016/j.matlet.2012.02.107
  22. W. B. White and R. Roy, Geochim. Cosmochim. Acta 39, 803 (1975). https://doi.org/10.1016/0016-7037(75)90026-5
  23. R. K. Zheng, H. Liu, Y. Wang, and X. X. Zhang, Appl. Phys. Lett. 84, 702 (2004). https://doi.org/10.1063/1.1644919

Cited by

  1. Enhanced room-temperature magnetoresistance in self-assembled Ag-coated multiphasic chromium oxide nanocomposites vol.18, pp.34, 2016, https://doi.org/10.1039/C6CP03585J
  2. nanoparticles obtained by the hydrothermal method vol.48, pp.10, 2017, https://doi.org/10.1002/jrs.5198
  3. Laser Ablation Synthesis, Structure, and Exchange Bias of Mn4C/MnO Powders pp.1543-186X, 2018, https://doi.org/10.1007/s11664-018-6604-z