Browse > Article
http://dx.doi.org/10.4283/JMAG.2015.20.3.211

Structure and Magnetic Properties of Cr2O3/CrO2 Nanoparticles Prepared by Reactive Laser Ablation and Oxidation under High Pressure of Oxygen  

Si, P.Z. (Zhejiang Key Lab of Magnetic Materials, or Department of Physics, China Jiliang University)
Wang, X.L. (Zhejiang Key Lab of Magnetic Materials, or Department of Physics, China Jiliang University)
Xiao, X.F. (Zhejiang Key Lab of Magnetic Materials, or Department of Physics, China Jiliang University)
Chen, H.J. (Zhejiang Key Lab of Magnetic Materials, or Department of Physics, China Jiliang University)
Liu, X.Y. (Faculty of Materials Science and Chemical Engineering, Ningbo University)
Jiang, L. (Zhejiang Key Lab of Magnetic Materials, or Department of Physics, China Jiliang University)
Liu, J.J. (Faculty of Materials Science and Chemical Engineering, Ningbo University)
Jiao, Z.W. (Zhejiang Key Lab of Magnetic Materials, or Department of Physics, China Jiliang University)
Ge, H.L. (Zhejiang Key Lab of Magnetic Materials, or Department of Physics, China Jiliang University)
Publication Information
Abstract
$Cr_2O_3$ nanoparticles were prepared via one-step reactive laser ablation of Cr in oxygen. The metastable $CrO_2$ phase was obtained through the subsequent oxidation of $Cr_2O_3$ nanoparticles under $O_2$ with gas pressures of up to 40 MPa. The as-prepared $Cr_2O_3$ nanoparticles are spherical or rectangular in shape with sizes ranging from 20 nm to 50 nm. High oxygen pressure annealing is effective in producing meta-stable $CrO_2$ from as-dried $Cr_2O_3$ nanoparticles, and the $Cr_2O_3$ nanoparticles exhibit a weak ferromagnetic behavior with an exchange bias of up to 11 mT that can be ascribed to the interfacial exchange coupling between uncompensated surface spins and the antiferromagnetic core. The $Cr_2O_3/CrO_2$ nanoparticles exhibit an enhanced saturation magnetization and a reduced exchange bias with an increasing faction of $CrO_2$ due to the elimination of uncompensated surface spins over the $Cr_2O_3$ nanoparticles when exposed to a high pressure of $O_2$ and/or possible phase segregation that results in a smaller grain size for both $Cr_2O_3$ and $CrO_2$.
Keywords
laser ablation; nanoparticles; $CrO_2$; high oxygen pressure annealing; magnetic properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. K. Gupta, E. Mitchell, J. Candler, P. K. Kahol, K. Ghosh, and L. Dong, Powder Technol. 254, 78 (2014).   DOI   ScienceOn
2 S. B. Wang, K. Murata, T. Hayakawa, S. Hamakawa, and K. Suzuki, Catal. Lett. 63, 59 (1999).   DOI
3 Z. Pei and Y. Zhang, Mater. Lett. 62, 504 (2008).   DOI   ScienceOn
4 W. S. Zhang, E. Bruck, Z. D. Zhang, O. Tegus, W. F. Li, P. Z. Si, D. Y. Geng, and K. H. J. Buschow, Physica B 358, 332 (2005).   DOI   ScienceOn
5 D. Vollath, D. V. Szabo, and J. O. Willis, Mater. Lett. 29, 271 (1996).   DOI   ScienceOn
6 Z. C. Zhong, R. H. Cheng, J. Bosley, P. A. Dowben, and D. J. Sellmyer, Appl. Surf. Sci. 181, 196 (2001).   DOI   ScienceOn
7 C. H. Lin, S. Y. Chen, N. J. Ho, D. Gan, and P. Shen, J. Phys. Chem. Solids 70, 1505 (2009).   DOI   ScienceOn
8 Q. Z. Dong, J. D. Hu, Z. X. Guo, J. S. Lian, J. W. Chen, and B. Chen, Appl. Surf. Sci. 202, 114 (2002).   DOI   ScienceOn
9 S. Khamlich, Z. Y. Nuru, A. Bello, M. Fabiane, J. K. Dangbegnon, N. Manyala, and M. Maaza, J. Alloys Compd. 637, 219 (2015).   DOI   ScienceOn
10 N. Patel, A. Santini, V. Bello, G. Mattei, and A. Miotello, Surf. Coat. Technol. 235, 784 (2013).   DOI   ScienceOn
11 M. Boutinguiza, B. Rodriguez-Gonzalez, J. del Val, R. Comesana, F. Lusquinos, and J. Pou, Appl. Surf. Sci. 258, 9484 (2012).   DOI   ScienceOn
12 C. C. Lin, C. J. Chen, and R. K. Chiang, J. Cryst. Growth 338, 152 (2012).   DOI   ScienceOn
13 A. Tomou, D. Gournis, I. Panagiotopoulos, Y. Huang, G. C. Hadjipanayis, and B. J. Kooi, J. Appl. Phys. 99, 123915 (2006).   DOI   ScienceOn
14 R. H. Kodama, S. A. Makhlouf, and A. E. Berkowitz, Phys. Rev. Lett. 97, 1393 (1997).
15 W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956).   DOI
16 C. Aguilera, J. C. Gonzalez, A. Borras, D. Margineda, J. M. Gonzalez, A. R. Gonzalez-Elipe, and J. P. Espinos, Thin Solid Films 539, 1 (2013).   DOI   ScienceOn
17 M. S. Anwar, M. Veldhorst, A. Brinkman, and J. Aarts, Appl. Phys. Lett. 100, 052602 (2012).   DOI   ScienceOn
18 Y. Ji, G. J. Strijkers, F. Y. Yang, C. L. Chien, J. M. Byers, A. Anguelouch, Gang Xiao, and A. Gupta, Phys. Rev. Lett. 86, 5585 (2001).   DOI   ScienceOn
19 Q. Zhao, Y. B. Fan, G. H. Wen, Z. G. Liu, H. A. Ma, X. P. Jia, G. T. Zou, and Ho-kwang Mao, Mater. Lett. 64, 592 (2010).   DOI   ScienceOn
20 Y. Shibasaki, F. Kanamaru, and M. Koizumi, Mat. Res. Bull. 5, 1051 (1970).   DOI   ScienceOn
21 Z. Pei, H. Xu, and Y. Zhang, Mater. Lett. 76, 205 (2012).   DOI   ScienceOn
22 W. B. White and R. Roy, Geochim. Cosmochim. Acta 39, 803 (1975).   DOI   ScienceOn
23 R. K. Zheng, H. Liu, Y. Wang, and X. X. Zhang, Appl. Phys. Lett. 84, 702 (2004).   DOI   ScienceOn