• 제목/요약/키워드: antibiotics residues

Search Result 76, Processing Time 0.021 seconds

Survey of residual antibiotics in muscle of slaughtered cattle and pig in Gyeongnam Province (경남지역에서 도축우 및 돼지의 근육내 잔류항균물질 검색)

  • 박동엽;양평섭;남창우;황보원;김원규;조상래;김도경
    • Korean Journal of Veterinary Service
    • /
    • v.25 no.3
    • /
    • pp.285-294
    • /
    • 2002
  • The present studies were carried out to determine antibiotics residues in pork and beef muscles by EEC-4-plate and HPLC. A total of 2,534 samples of pork muscles and 1,070 samples of beef muscles from slaughter houses were collected in Gyeongnam area from January to December, 2001. The results were summarized as follows; 1. Recovery rates of TCs, Sulfa drug, Penicillin G from fortified pork and beef muscles ranged as 68.79~98.24%, 78.21~94.58% and penicillin G 63.35~67.24% respectively, by HPLC. 2. Antibiotics residues were detected in 36 sample(1.42%) of pork muscles, 29 sample (2.71%) of beef muscles by EEC-4-plate. 3. Detection rate of antibiotic residues 14 samples(0.55%) and 26 samples(2.43%), in pork and beef muscles, respectively by HPLC. Concentration of residues in 22 sample(2.06%) of beef muscle were higher than tolerance level in korea. 4. Antibiotics detected were sulfamethazine(47.37%), tetracycline(15.79%), oxytetracycline (15.79%), penicillin G(15.79%), sulfamerazine(5.26%) in pork muscle samples and oxyteracycline (37.21%), penicillin G(30.23%), sulfamethazine(20.93%), tetracycline(4.65%), sulfamerazine (2.33%), sulfadimethoxine(2.33%), sulfaquinoxine(2.33%) in beef muscle samples.

Prevalence of Antibiotic Residues and Antibiotic Resistance in Isolates of Chicken Meat in Korea

  • Lee, Hyo-Ju;Cho, Seung-Hak;Shin, Dasom;Kang, Hui-Seung
    • Food Science of Animal Resources
    • /
    • v.38 no.5
    • /
    • pp.1055-1063
    • /
    • 2018
  • The aim of study was to investigate the correlation between the level of 17 antibiotic residues and 6 antibiotic resistances of Escherichia coli isolates in chicken meats. A total of 58 chicken meats were collected from retail grocery stores in five provinces in Korea. The total detection rate of antibiotic residues was 45% (26 out of 58). Ten out of 17 antibiotics were detected in chicken meats. None of the antibiotics exceeded the maximum residue level (MRLs) in chicken established by the Ministry of Food and Drug Safety (MFDS). The most detected antibiotics were amoxicillin (15.5%), followed by enrofloxacin (12.1%) and sulfamethoxazole (10.3%). In a total of 58 chicken meats, 51 E. coli strains were isolated. E. coli isolates showed the highest resistance to ampicillin (75%), followed by tetracycline (69%), ciprofloxacin (65%), trimethoprim/sulfamethoxazole (41%), ceftiofur (22%), and amoxicillin/clavulanic acid (12%). The results of study showed basic information on relationship between antibiotic residue and resistance for 6 compounds in 13 chicken samples. Further investigation on the antibiotic resistance patterns of various bacteria species is needed to improve food safety.

Reducing Veterinary Drug Residues in Animal Products: A Review

  • Rana, Md Shohel;Lee, Seung Yun;Kang, Hae Jin;Hur, Sun Jin
    • Food Science of Animal Resources
    • /
    • v.39 no.5
    • /
    • pp.687-703
    • /
    • 2019
  • A survey we conducted suggests that the ingestion of veterinary drug residues in edible animal parts constitutes a potential health hazard for its consumers, including, specifically, the possibility of developing multidrug resistance, carcinogenicity, and disruption of intestinal normal microflora. The survey results indicated that antibiotics, parasitic drugs, anticoccidial, or nonsteroidal anti-inflammatory drugs (NSAIDs) are broadly used, and this use in livestock is associated with the appearance of residues in various animal products such as milk, meat, and eggs. We observed that different cooking procedures, heating temperatures, storage times, fermentation, and pH have the potential to decrease drug residues in animal products. Several studies have reported the use of thermal treatments and sterilization to decrease the quantity of antibiotics such as tetracycline, oxytetracycline, macrolides, and sulfonamides, in animal products. Fermentation treatments also decreased levels of penicillin and pesticides such as dimethoate, malathion, Dichlorodiphenyldichloroethylene, and lindane. pH, known to influence decreases in cloxacillin and oxacillin levels, reportedly enhanced the dissolution of antimicrobial drug residues. Pressure cooking also reduced aldrin, dieldrin, and endosulfan in animal products. Therefore, this review provides updated information on the control of drug residues in animal products, which is of significance to veterinarians, livestock producers, and consumer health.

Application of ELISA for the Detection of Penicillin Antibiotic Residues in Live Animal

  • Lee, H.J.;Lee, M.H.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.11
    • /
    • pp.1604-1608
    • /
    • 2000
  • Penicillin antibiotics such as penicillin G, ampicillin and amoxicillin have been widely used in the pig industry to control salmonellosis, bacterial pneumonia, and urinary tract infections. Extensive use of antibiotics in veterinary clinics has resulted in tissue residues and bacterial resistance. To prevent unwanted drug residues entering the human food chain, extensive control measures have been established by both government authorities and industries. The demands for reliable, simple, sensitive, rapid and low-cost methods for residue analysis of foods are increasing. In this study, we established a rapid prediction test for the detection of pigs with unacceptable tissue residues of penicillins. The recommended therapeutic doses of three penicillins, penillin G (withdrawal time, 7 days), ampicillin (withdrawal time, 7 days) and amoxicillin (withdrawal time, 14 days), were administered to three groups of 20 pigs each. Blood was sampled before drug administration and during the withdrawal period. The concentration of penicillins in plasma, determined by a semi-quantitative ELISA, were compared to that of internal standard, 4 ppb, which corresponded to the Maximum Residue Limit in milk. The absorbance ratio of internal standard to sample (B/Bs) was employed as an index to determine whether drug residues in pig tissues were negative or positive. That is, a B/Bs ratio less than 1 was considered residue positive, and larger than 1 negative. All 60 plasma samples from pigs were negative to three penicillins at pretreatment. Penicillin G could be detected in the plasma of the treated pigs until day 4 post-treatment and ampicillin until day 2, whereas amoxicillin could be detected until day 10 of its withdrawal period. The present study showed that the semi-quantitative ELISA could be easily adapted to detect residues of penicillin antibiotics (penicillin G, ampicillin and amoxicillin) in live pigs.

Overview of Analytical Methods for Detection of Antibiotics in Milk and Dairy Products (우유 및 유제품 중 잔류항생물질 분석법에 대한 연구)

  • Kim, Hyoun Wook;Kim, Ki-Hwan;Seol, Kuk-Hwan;Oh, Mi-Hwa;Park, Beam Young
    • Journal of Dairy Science and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.59-65
    • /
    • 2013
  • Antibiotic residues are undesirable in milk and milk products for a number of reasons. In particular, they can have harmful effects on public health and harm to the manufacturer of the cultured milk products, e.g. MRSA etc. Although government regulatory agencies and the dairy industry have been successful in decreasing the presence of high concentrations of antibiotic residues, violations still occur and lead to contaminated products. As a result, several rapid and reliable methods for the detection of antibiotic residues have been developed, including microbiological and instrumental analysis methods. The conventional methods are time consuming, but recent improvements have allowed for better detection time, sensitivity, and accuracy. An example of an advanced detection instrument is the biosensor, which has several applications in food and environmental science, e.g. food-born pathogen detection, antimicrobial residues etc. In the present review, the recent trends in the methods used to test for antibiotic residues in milk and dairy products, as well as their specific applications, have been discussed.

  • PDF

Development Trend of Biosensors for Antimicrobial Drugs in Water Environment (물 환경 내 항생제 약물 분석을 위한 바이오센서 개발 연구 동향)

  • Goh, Eunseo;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.565-572
    • /
    • 2016
  • While there have been great demands on improving domestic water pollution issues, the necessity for real time monitoring of particular drug residues in water resources has been raised since drug residues including antibiotics could provoke new trains of drug-resistant bacteria in water environments. Among many different types of drugs used for pharmaceutical treatment, antibiotics are considered to be one of the most hazardous to our ecosystem since they can rapidly promote the spreading of drug-resistant bacteria in water environments. In this mini-review, we will highlight recent developments made on creating in-situ sensing platforms for the fast monitoring of antibiotic residues in aquatic environmental samples focusing on optical and electrochemical techniques. Related recent technology developments and the resulting economy effects will also be discussed.

Detection of Sulfa-Drugs and Antibiotics Residues in Raw Milk (원유중의 잔류항생물질 및 썰파제 조사)

  • 박병옥;백미순;권기호;우기방;장기윤
    • Korean Journal of Veterinary Service
    • /
    • v.14 no.1
    • /
    • pp.63-69
    • /
    • 1991
  • Antibiotic residues of raw milks collected in Anyang area were tested by TTC-reduction test, EEC-4plate method and TLC(SOS-kit ) method to improve and monitor the quality of milk. Antibiotic substances were not detected from 100 raw milk samples, but sulfamethazine was detected from only one sample(1.3PPM) by SOS test. Unclassified anti-microbic substances were detected from 22 samples by EEC-4 plate method. EEC-4 plate test was useful to categorize the species of antibacterial substances and SOS test was useful to detect the sulfamethazine field screening test.

  • PDF

Analysis and Monitoring of Residues of Aminoglycoside Antibiotics in Livestock Products (축산식품 중 아미노글리코사이드계 항생제 잔류량 분석 및 실태조사)

  • Kang, Young-Woon;Joo, Hyun-Jin;Kim, Yang-Sun;Cho, Yu-Jin;Kim, Hee-Yun;Lee, Gwang-Ho;Kim, Mee-Hye
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • It is possible that veterinary medicines remain in livestock food products, according to the use of many and various veterinary medicines to protect against disease when livestock animals are breed in limited space. Concentrated and continuous monitoring of residues is needed due to increases in resistance to antibiotics and side effects by eating livestock food products. We developed an analysis method for detecting streptomycin, dihydrostreptomycin, neomycin, gentamicin and spectinomycin in meat using LC/MS/MS and measured sensitivity, precision, accuracy, linearity and recovery according to CODEX guidelines to acquire confidence in the analysis method. Based on the results, we acquired good sensitivity compared to the maximum residue limit (MRL) as limits of detection (LOD) were 0.002-0.016 mg/kg and limits of quantification (LOQ) were 0.006-0.050 mg/kg. The analysis method satisfied the CODEX guidelines. The linearity ($r^2$) values of aminoglycoside antibiotics were 0.9936-0.9980, recoveries were 60-110% and relative standard deviations (RSD) were within 15%. As a result of monitoring for residues in a total 250 samples of livestock foods such as pork, chicken, and beef by the confirmed method, dihydrostreptomycin and gentamicin were detected in 5 pork samples. The residues of these antibiotics were within the MRLs. Thus, the detection ratio was 2% as 5 samples were identified from 250 samples.

Evaluation and Improvement of Bioassay for Residual Antibiotics in Foods (식품 내의 잔류 항생제에 대한 미생물학적 간이검사법의 평가 및 개선)

  • Park, Min-Hee;Kim, Tae-Woon;Jo, Nam-Uk;Jeong, Ji-Yoon;Lee, Soon-Ho;Lee, Jong-Ok;Kim, Hae-Yeong
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.4
    • /
    • pp.360-365
    • /
    • 2008
  • For the screening of residual antibiotics in foods, bioassays and microbiological inhibitor tests are commonly applied. These methods are tested by the various susceptibility of bacteria against different kinds of antibiotics. However, the sensitivity of bioassay is generally insufficient to detect some residual antibiotics at level of interest. This study was performed to investigate the detection limit of variable antibiotics of the bioassay and to improve the sensitivity to some antibiotics. The sensitivity of bioassay using Bacillus megaterium ATCC 9885, B. subtilis ATCC 6633, B. cereus ATCC 11778 and Geobacillus stearothermophilus ATCC 10149 was low in the detection of macrolides, quinolones, chloramphenicol, and monensin. On the contrary, Micrococcus luteus ATCC 9341 showed high sensitivity to macrolides and Escherichia coli ATCC 11303 was highly sensitive to quinolones and aminoglycosides. Consequently, both strains would be useful to improve sensitivity of bioassay with a wide detection range.

ANTIBIOTICS RESIDUES IN RAW MILK IN THAILAND

  • Amonsin, A.;Saitanu, K.;Teeverapanya, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.1
    • /
    • pp.27-30
    • /
    • 1996
  • One thousand eight hundreds and twenty two samples of raw milk were detected for antibiotic residues using Bacillus subtilis ATTCC 6633, B. stearothermophilus var. calidolactis C 593 and Micrococcus luteus ATCC 9341 as test organisms, were carried out from July 1991 through June 1992. Apparent antibiotic residues were found through out the study period, except in January. The detection rate varied from 0.7% in March and May to 11% in April. One hundred and thirty six (72%) samples of the 187 screening positive samples were considered to contain only the indigenous antimicrobial agents. Of the total, 51 (2.8%) samples were positive for antibiotic residues. Among the tested organisms, B. stearothermophilus var. calidolactis was the most sensitive organism in detection of the antibiotic residues.