• 제목/요약/키워드: antibiofilm

검색결과 31건 처리시간 0.021초

Undecanoic Acid, Lauric Acid, and N-Tridecanoic Acid Inhibit Escherichia coli Persistence and Biofilm Formation

  • Jin, Xing;Zhou, Jiacheng;Richey, Gabriella;Wang, Mengya;Choi Hong, Sung Min;Hong, Seok Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권1호
    • /
    • pp.130-136
    • /
    • 2021
  • Persister cell formation and biofilms of pathogens are extensively involved in the development of chronic infectious diseases. Eradicating persister cells is challenging, owing to their tolerance to conventional antibiotics, which cannot kill cells in a metabolically dormant state. A high frequency of persisters in biofilms makes inactivating biofilm cells more difficult, because the biofilm matrix inhibits antibiotic penetration. Fatty acids may be promising candidates as antipersister or antibiofilm agents, because some fatty acids exhibit antimicrobial effects. We previously reported that fatty acid ethyl esters effectively inhibit Escherichia coli persister formation by regulating an antitoxin. In this study, we screened a fatty acid library consisting of 65 different fatty acid molecules for altered persister formation. We found that undecanoic acid, lauric acid, and N-tridecanoic acid inhibited E. coli BW25113 persister cell formation by 25-, 58-, and 44-fold, respectively. Similarly, these fatty acids repressed persisters of enterohemorrhagic E. coli EDL933. These fatty acids were all medium-chain saturated forms. Furthermore, the fatty acids repressed Enterohemorrhagic E. coli (EHEC) biofilm formation (for example, by 8-fold for lauric acid) without having antimicrobial activity. This study demonstrates that medium-chain saturated fatty acids can serve as antipersister and antibiofilm agents that may be applied to treat bacterial infections.

Combination of berberine and ciprofloxacin reduces multi-resistant Salmonella strain biofilm formation by depressing mRNA expressions of luxS, rpoE, and ompR

  • Shi, Chenxi;Li, Minmin;Muhammad, Ishfaq;Ma, Xin;Chang, Yicong;Li, Rui;Li, Changwen;He, Jingshan;Liu, Fangping
    • Journal of Veterinary Science
    • /
    • 제19권6호
    • /
    • pp.808-816
    • /
    • 2018
  • Bacterial biofilms have been demonstrated to be closely related to clinical infections and contribute to drug resistance. Berberine, which is the main component of Coptis chinensis, has been reported to have efficient antibacterial activity. This study aimed to investigate the potential effect of a combination of berberine with ciprofloxacin (CIP) to inhibit Salmonella biofilm formation and its effect on expressions of related genes (rpoE, luxS, and ompR). The fractional inhibitory concentration (FIC) index of the combination of berberine with CIP is 0.75 showing a synergistic antibacterial effect. The biofilm's adhesion rate and growth curve showed that the multi-resistant Salmonella strain had the potential to form a biofilm relative to that of strain CVCC528, and the antibiofilm effects were in a dose-dependent manner. Biofilm microstructures were rarely observed at $1/2{\times}MIC/FIC$ concentrations (MIC, minimal inhibition concentration), and the combination had a stronger antibiofilm effect than each of the antimicrobial agents used alone at $1/4{\times}FIC$ concentration. LuxS, rpoE, and ompR mRNA expressions were significantly repressed (p< 0.01) at $1/2{\times}MIC/FIC$ concentrations, and the berberine and CIP combination repressed mRNA expressions more strongly at the $1/4{\times}FIC$ concentration. The results indicate that the combination of berberine and CIP has a synergistic effect and is effective in inhibiting Salmonella biofilm formation via repression of luxS, rpoE, and ompR mRNA expressions.

Tuberostemonine에 의한 Staphylococcus aureus의 생물막 억제 효과 (Inhibitory effects of tuberostemonine on Staphylococcus aureus biofilm)

  • 염수진;김승민;권준혁;정희곤
    • 한국식품과학회지
    • /
    • 제54권2호
    • /
    • pp.241-246
    • /
    • 2022
  • 본 연구는 S. aureus에 대한 tuberostemonine의 항균 및 항생물막 효과에 대하여 확인하였다. S. aureus에 대한 tuberostemonine의 생장 저해 효과가 없음을 확인하였으나, crystal violet 염색법과 CLSM 이미지 측정을 통해 tuberostemonine이 유의한 S. aureus 항생물막 효과 가지는 것을 알 수 있었다. S. aureus의 생물막 형성과 분해 관련 유전자인 icaA와 agrA의 발현은 tuberostemonine를 처리하였을 때 유의미하게 각각 감소 또는 증가하는 것으로 나타났다. 따라서 본 연구에서 생물막 형성 저해 및 분해 효과가 확인된 천연화합물인 tuberostemonine은 S. aureus의 내성 발생 위험이 적은 새로운 항생물막제제로서 사용가능 할 것으로 사료된다.

Multi-Function of a New Bioactive Secondary Metabolite Derived from Endophytic Fungus Colletotrichum acutatum of Angelica sinensis

  • Ramy S. Yehia
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권6호
    • /
    • pp.806-822
    • /
    • 2023
  • In the current study we assessed a new crystallized compound, 5-(1-hydroxybutyl)-4-methoxy-3-methyl-2H-pyran-2-one (C-HMMP), from the endophytic fungus Colletotrichum acutatum residing in the medicinal plant Angelica sinensis for its in vitro antimicrobial, antibiofilm, antioxidant, antimalarial, and anti-proliferative properties. The promising compound was identified as C-HMMP through antimicrobial-guided fraction. The structure of C-HMMP was unambiguously confirmed by 2D NMR and HIRS spectroscopic analysis. Antimicrobial property testing of C-HMMP showed it to be effective against a variety of pathogenic bacteria and fungi with MICs ranging from 3.9 to 31.25 ㎍/ml. The compound displayed excellent antibiofilm activity against C. albicans, S. aureus, and K. pneumonia. Furthermore, the antimalarial and radical scavenging activities of C-HMMP were clearly dosedependent, with IC50 values of 0.15 and 131.2 ㎍/ml. The anti-proliferative activity of C-HMMP against the HepG-2, HeLa, and MCF-7 cell lines in vitro was investigated by MTT assay, revealing notable anti-proliferative activity with IC50 values of 114.1, 90, and 133.6 ㎍/ml, respectively. Moreover, CHMMP successfully targets topoisomerase I and demonstrated beneficial anti-mutagenicity in the Ames test against the reactive carcinogenic mutagen, 2-aminofluorene (2-AF). Finally, the compound inhibited the activity of α-glucosidase and α-amylase with IC50 values of 144.7 and 118.6 ㎍/ml, respectively. To the best of our knowledge, the identified compound C-HMMP was obtained for the first time from C. acutatum of A. sinensis, and this study demonstrated that C-HMMP has relevant biological significance and could provide better therapeutic targets against disease.

식품 유래 Biofilm 형성 유산균에 대한 대황(Eisenia bicyclis) 유래 Nanoparticle의 Biofilm 형성 저해 (Inhibition of Food-derived Lactic Acid Bacterial Biofilm Formation Using Eisenia bicyclis-derived Nanoparticles)

  • 오도경;;박슬기;조두민;조경진;정금재;심연주;최정미;운재호;김영목
    • 한국수산과학회지
    • /
    • 제57권2호
    • /
    • pp.129-136
    • /
    • 2024
  • Lactic acid bacteria (LAB) growth in processed meat products produces slime. In this study, 10 different biofilm-forming LAB, including Leuconostoc mesenteroides, Lacticaseibacillus paracasei, Levilactobacillus brevis, Lactiplantibacillus plantarum, Leuconostoc citreum, Weissella viridescens, and Latilactobacillus sakei, were isolated from various meat products and identified based on 16S rRNA gene analysis. To inhibit biofilm formation by LABs, Eisenia bicycles methanolic extract (EB) and ethyl acetate soluble fraction (EA) were used as antibacterial and antibiofilm agents, respectively. Furthermore, EA and EB were employed to synthesize gold nanoparticles (AuNPs) such as EB-AuNPs and EA-AuNPs, which could serve as antibiofilm agents against the isolated LAB. These findings demonstrate that EA, EB-AuNPs, and EA-AuNPs exhibit significant antibacterial activity against the isolated LAB. Furthermore, EB-AuNPs reduced L. citreum biofilm production, whereas EA-AuNPs inhibited L. mesenteroides and L. brevis biofilm formation. The current results suggest that EB-AuNPs and EA-AuNPs can be used as nanomaterials to inhibit LAB that form biofilms on meat products.

세포벽 (1,3)-${\beta}$-D-Glucan Polymer 합성의 저해로 인한 황금(Scutellaria baicalensis)의 항바이오필름 활성 (Antibiofilm Activity of Scutellaria baicalensis through the Inhibition of Synthesis of the Cell Wall (1, 3)-${\beta}$-D-Glucan Polymer)

  • 김연희
    • 한국미생물·생명공학회지
    • /
    • 제41권1호
    • /
    • pp.88-95
    • /
    • 2013
  • Candida 바이오필름은 숙주조직과 의료기기의 표면에 자라는 자가-조직화된 미생물의 군락으로 전통적인 항진균제에 대한 저항성이 높게 나타난다. 황금(Scutellaria baicalensis)의 뿌리는 극동지방에서 의료용 목적으로 널리 사용되어 왔다. 본 연구의 목적은 10 C. albicans 임상 분리균주에 의해 형성된 바이오필름에 대한 황금의 수용성 추출물의 효과를 평가하고, 항바이오필름 활성에 대한 메커니즘을 알아보는 것이다. 바이오필름에 대한 효과는 XTT 환원분석법을 사용하였으며, 조사된 모든 균주에 대한 대사활성은 MIC에서 유의하게 감소($57.7{\pm}17.3$%)하였다. 황금추출물은 (1,3)-${\beta}$-D-글루칸 합성효소의 활성을 저해하였고 C. albicans의 형태에 대한 황금의 효과는 글루칸 합성의 억제로 인한 생장의 변화와 관련이 있었다: 대부분의 세포는 둥글고 팽창되었으며 세포벽이 진하게 염색되거나 파열되었다. 항캔디다 활성은 살진균성이었고, 황금은 C. albicans를 $G_0/G_1$기에 머물게 했다. 데이터는 황금이 목표가 되는 균류에 다중의 치명적인 효과를 내며, (1,3)-${\beta}$-D-글루칸 합성효소의 활성을 저해함을 통해 궁극적으로는 세포벽의 파열과 죽음에 이르게 한다는 것을 나타낸다. 따라서 황금은 바이오필름과 관련된 캔디다의 감염을 치료하고 제거하기 위한 항진균제 개발 후보 물질로서의 가능성을 가진다.

Antimicrobial activity and cytotoxicity test of Scrophularia ningpoensis hemsl extracts against Klebsiella pneumoniae

  • Yook, Keun-Dol
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권5호
    • /
    • pp.135-139
    • /
    • 2016
  • Scrophularia ningpoensis hemsl has been traditionally used in China and Vietnam for treatment of bacteria, atopy, pimple, tonsillitis, angina and encephalitis for a long time. The main objectives of this study were to evaluate the antibacterial activity of the Scrophularia ningpoensis hemsl extract on biofilm formation of Klebsiella pneumoniae. Antibacterial activity was conducted using disc diffusion assay and minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) were determined using the broth micro dilution method in accordance to Clinical and Laboratory Standards Institute guidelines(CLSI). Furthermore, cytotoxicity on L929 were assessed using animal cell culture for the proliferation test(MTT cell assay) and the biofilm forming capacity of the K. pneumoniae were determined using the colony forming unit (CFU) assay. The extract exhibited considerable antibacterial activity. K. pneumoniae was susceptible to the extract with the MIC and MBC of 0.1875 and $1.5mg/m{\ell}$ respectively. Cytoxicity test in L929 showed no sign of toxicity at the concentration of $0.75mg/m{\ell}$ and at the same concentration the extract caused inhibition of bacterial biofilm formation. The extract of Scrophularia ningpoensis hemsl possesses an in vitro antibacterial antibiofilm activities against K. pneumoniae, with no sign of cytoxicity on L929.

Effect of Probiotic Clostridium butyricum NCTC 7423 Supernatant on Biofilm Formation and Gene Expression of Bacteroides fragilis

  • Shi, Da-Seul;Rhee, Ki-Jong;Eom, Yong-Bin
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권3호
    • /
    • pp.368-377
    • /
    • 2020
  • Enterotoxigenic Bacteroides fragilis (ETBF) is the main pathogen causing severe inflammatory diseases and colorectal cancer. Its biofilm plays a key role in the development of colorectal cancer. The objective of this study was to determine the antagonistic effects of cell-free supernatants (CFS) derived from Clostridium butyricum against the growth and biofilm of ETBF. Our data showed that C. butyricum CFS inhibited the growth of B. fragilis in planktonic culture. In addition, C. butyricum CFS exhibited an antibiofilm effect by inhibiting biofilm development, disassembling preformed biofilms and reducing the metabolic activity of cells in biofilms. Using confocal laser scanning microscopy, we found that C. butyricum CFS significantly suppressed the proteins and extracellular nucleic acids among the basic biofilm components. Furthermore, C. butyricum CFS significantly downregulated the expression of virulence- and efflux pump-related genes including ompA and bmeB3 in B. fragilis. Our findings suggest that C. butyricum can be used as biotherapeutic agent by inhibiting the growth and biofilm of ETBF.

Anti-biofilm Activity of Xanthorrhizol Isolated from Curcuma xanthorrhiza Roxb. against Bacterial Biofilms Formed by Saliva and Artificial Multi-species Oral Strains

  • Yanti, Yanti;Rukayadi, Yaya;Lee, Kwan-Hyoung;Han, Sung-Hwa;Hwang, Jae-Kwan
    • Food Science and Biotechnology
    • /
    • 제18권2호
    • /
    • pp.556-560
    • /
    • 2009
  • Xanthorrhizol, a sesquiterpene isolated from Curcuma xanthorrhiza Roxb., was used to investigate its effect on reducing the saliva and multi-species oral biofilms consisting of Streptococcus mutans, Streptococcus sanguis, and Actinomyces viscosus by anti-biofilm and confocal laser scanning microscopy (CLSM) assays. Xanthorrhizol exhibited significant antibiofilm activity in the dose- and time-dependent manners. Exposure to 2 and $5{\mu}g/mL$ xanthorrhizol for 30 min remained <50% of saliva and multi-species biofilms formed for 24 hr. In addition, exposure to $10{\mu}g/mL$ xanthorrhizol for 30 min reduced 65 and 77% of 24 hr saliva and multi-species oral biofilms, respectively. CLSM results visually demonstrated that xanthorrhizol reduced bacterial viability in the saliva and multi-species oral biofilms. These results suggest that C. xanthorrhiza Roxb. containing xanthorrhizol with strong anti-biofilm activity can be employed as a plant source for oral care functional foods.

Inhibition of biofilm formation of periodontal pathogens by D-Arabinose

  • An, Sun-Jin;Namkung, Jong-Uk;Ha, Kyung-Won;Jun, Hye-Kyoung;Kim, Hyun Young;Choi, Bong-Kyu
    • International Journal of Oral Biology
    • /
    • 제46권3호
    • /
    • pp.111-118
    • /
    • 2021
  • Periodontitis and periimplantitis are caused as a result of dental biofilm formation. This biofilm is composed of multiple species of pathogens. Therefore, controlling biofilm formation is critical for disease prevention. To inhibit biofilm formation, sugars can be used to interrupt lectin-involving interactions between bacteria or between bacteria and a host. In this study, we evaluated the effect of D-Arabinose on biofilm formation of putative periodontal pathogens as well as the quorum sensing activity and whole protein profiles of the pathogens. Crystal violet staining, confocal laser scanning microscopy, and scanning electron microscopy revealed that D-Arabinose inhibited biofilm formation of Porphyromonas gingivalis, Fusobacterium nucleatum, and Tannerella forsythia. D-Arabinose also significantly inhibited the activity of autoinducer 2 of F. nucleatum and the expression of representative bacterial virulence genes. Furthermore, D-Arabinose treatment altered the expression of some bacterial proteins. These results demonstrate that D-Arabinose can be used as an antibiofilm agent for the prevention of periodontal infections.