Browse > Article
http://dx.doi.org/10.4014/jmb.2001.01027

Effect of Probiotic Clostridium butyricum NCTC 7423 Supernatant on Biofilm Formation and Gene Expression of Bacteroides fragilis  

Shi, Da-Seul (Department of Medical Sciences, College of Medical Sciences, Soonchunhyang University)
Rhee, Ki-Jong (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju)
Eom, Yong-Bin (Department of Medical Sciences, College of Medical Sciences, Soonchunhyang University)
Publication Information
Journal of Microbiology and Biotechnology / v.30, no.3, 2020 , pp. 368-377 More about this Journal
Abstract
Enterotoxigenic Bacteroides fragilis (ETBF) is the main pathogen causing severe inflammatory diseases and colorectal cancer. Its biofilm plays a key role in the development of colorectal cancer. The objective of this study was to determine the antagonistic effects of cell-free supernatants (CFS) derived from Clostridium butyricum against the growth and biofilm of ETBF. Our data showed that C. butyricum CFS inhibited the growth of B. fragilis in planktonic culture. In addition, C. butyricum CFS exhibited an antibiofilm effect by inhibiting biofilm development, disassembling preformed biofilms and reducing the metabolic activity of cells in biofilms. Using confocal laser scanning microscopy, we found that C. butyricum CFS significantly suppressed the proteins and extracellular nucleic acids among the basic biofilm components. Furthermore, C. butyricum CFS significantly downregulated the expression of virulence- and efflux pump-related genes including ompA and bmeB3 in B. fragilis. Our findings suggest that C. butyricum can be used as biotherapeutic agent by inhibiting the growth and biofilm of ETBF.
Keywords
Bacteroides fragilis; Clostridium butyricum; probiotics; enterotoxigenic Bacteroides fragilis (ETBF); biofilm;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Takahashi M, Taguchi H, Yamaguchi H, Osaki T, Kamiya S. 2000. Studies of the effect of Clostridium butyricum on Helicobacter pylori in several test models including gnotobiotic mice. J. Med. Microbiol. 49: 635-642.   DOI
2 Takahashi M, Taguchi H, Yamaguchi H, Osaki T, Komatsu A, Kamiya S. 2004. The effect of probiotic treatment with Clostridium butyricum on enterohemorrhagic Escherichia coli O157:H7 infection in mice. FEMS Immunol. Med. Microbiol. 41: 219-226.   DOI
3 Hayashi A, Sato T, Kamada N, Mikami Y, Matsuoka K, Hisamatsu T, et al. 2013. A single strain of Clostridium butyricum induces intestinal IL-10-producing macrophages to suppress acute experimental colitis in mice. Cell Host. Microbe. 13: 711-722.   DOI
4 Rhee KJ, Wu S, Wu X, Huso DL, Karim B, Franco AA, et al. 2009. Induction of persistent colitis by a human commensal, enterotoxigenic Bacteroides fragilis, in wild-type C57BL/6 mice. Infect. Immun. 77: 1708-1718.   DOI
5 Rosenblatt JE, Stewart PR. 1975. Anaerobic bag culture method. J. Clin. Microbiol. 1: 527-530.   DOI
6 Kim H, Kang SS. 2019. Antifungal activities against Candida albicans, of cell-free supernatants obtained from probiotic Pediococcus acidilactici HW01. Arch. Oral Biol. 99: 113-119.   DOI
7 Wasfi R, Abd El-Rahman OA, Zafer MM, Ashour HM. 2018. Probiotic Lactobacillus sp. inhibit growth, biofilm formation and gene expression of caries-inducing Streptococcus mutans. J. Cell. Mol. Med. 22: 1972-1983.   DOI
8 Clinical and Laboratory Standards Institute. 2011. Performance standards for antimicrobial susceptibility testing of anaerobic bacteria: Informational Supplement M11-S1. Wayne, P.A.: Clinical and Laboratory Standards Institute.
9 Pratt LA, Kolter R. 1998. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol. Microbiol. 30: 285-293.   DOI
10 Jaffar N, Ishikawa Y, Mizuno K, Okinaga T, Maeda T. 2016. Mature biofilm degradation by potential probiotics: Aggregatibacter actinomycetemcomitans versus Lactobacillus spp. PLoS One. 11: e0159466.   DOI
11 Cady NC, McKean KA, Behnke J, Kubec R, Mosier AP, Kasper SH, et al. 2012. Inhibition of biofilm formation, quorum sensing and infection in Pseudomonas aeruginosa by natural products-inspired organosulfur compounds. PLoS One 7: e38492.   DOI
12 Pierce CG, Uppuluri P, Tristan AR, Wormley FL, Jr., Mowat E, Ramage G, et al. 2008. A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat. Protoc. 3: 1494-1500.   DOI
13 Fischer J, Prosenc MH, Wolff M, Hort N, Willumeit R, Feyerabend F. 2010. Interference of magnesium corrosion with tetrazolium-based cytotoxicity assays. Acta Biomater. 6: 1813-1823.   DOI
14 Nosyk O, ter Haseborg E, Metzger U, Frimmel FH. 2008. A standardized pre-treatment method of biofilm flocs for fluorescence microscopic characterization. J. Microbiol. Methods 75: 449-456.   DOI
15 Bundgaard-Nielsen C, Baandrup UT, Nielsen LP, Sorensen S. 2019. The presence of bacteria varies between colorectal adenocarcinomas, precursor lesions and non-malignant tissue. BMC Cancer 19(1): 399.   DOI
16 Cordeiro RA, Aguiar ALR, Pereira VS, Pereira LMG, Portela FVM, Brilhante RSN, et al. 2019. Sodium butyrate inhibits planktonic cells and biofilms of Trichosporon spp. Microb. Pathog. 130: 219-225.   DOI
17 Shang H, Sun J, Chen YQ. 2016. Clostridium Butyricum CGMCC0313.1 Modulates lipid profile, insulin resistance and colon homeostasis in obese mice. PLoS One 11: e0154373.   DOI
18 Gill PA, van Zelm MC, Muir JG, Gibson PR. 2018. Review article: short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders. Aliment. Pharmacol. Ther. 48: 15-34.   DOI
19 Chung PY, Toh YS. 2014. Anti-biofilm agents: recent breakthrough against multi-drug resistant Staphylococcus aureus. Pathog. Dis. 70: 231-239.   DOI
20 Seghal Kiran G, Priyadharshini S, Dobson ADW, Gnanamani E, Selvin J. 2016. Degradation intermediates of polyhydroxy butyrate inhibits phenotypic expression of virulence factors and biofilm formation in luminescent Vibrio sp. PUGSK8. NPJ Biofilms Microbiomes 2: 16002.   DOI
21 Poquet I, Saujet L, Canette A, Monot M, Mihajlovic J, Ghigo JM, et al. 2018. Clostridium difficile Biofilm: Remodeling metabolism and cell surface to build a sparse and heterogeneously aggregated architecture. Front. Microbiol. 9: 2084.   DOI
22 Pumbwe L, Skilbeck CA, Nakano V, Avila-Campos MJ, Piazza RM, Wexler HM. 2007. Bile salts enhance bacterial co-aggregation, bacterial-intestinal epithelial cell adhesion, biofilm formation and antimicrobial resistance of Bacteroides fragilis. Microb. Pathog. 43: 78-87.   DOI
23 Pumbwe L, Skilbeck CA, Wexler HM. 2008. Presence of quorum-sensing systems associated with multidrug resistance and biofilm formation in Bacteroides fragilis. Microb. Ecol. 56: 412-419.   DOI
24 Jia L, Li D, Feng N, Shamoon M, Sun Z, Ding L, et al. 2017. Anti-diabetic effects of Clostridium butyricum CGMCC0313.1 through promoting the growth of gut butyrate-producing bacteria in type 2 diabetic mice. Sci. Rep. 7: 7046.   DOI
25 Wexler HM, Tenorio E, Pumbwe L. 2009. Characteristics of Bacteroides fragilis lacking the major outer membrane protein, OmpA. Microbiology 155: 2694-2706.   DOI
26 Pumbwe L, Ueda O, Yoshimura F, Chang A, Smith RL, Wexler HM. 2006. Bacteroides fragilis BmeABC efflux systems additively confer intrinsic antimicrobial resistance. J. Antimicrob. Chemother. 58: 37-46.   DOI
27 Cassir N, Benamar S, La Scola B. 2016. Clostridium butyricum: from beneficial to a new emerging pathogen. Clin. Microbiol. Infect. 22: 37-45.   DOI
28 Di Martino P. 2018. Extracellular polymeric substances, a key element in understanding biofilm phenotype. AIMS Microbiol. 4: 274-288.   DOI
29 Dejea CM, Wick EC, Hechenbleikner EM, White JR, Mark Welch JL, Rossetti BJ, et al. 2014. Microbiota organization is a distinct feature of proximal colorectal cancers. Proc. Natl. Acad. Sci. USA 111: 18321-18326.   DOI
30 Chen ZF, Ai LY, Wang JL, Ren LL, Yu YN, Xu J, et al. 2015. Probiotics Clostridium butyricum and Bacillus subtilis ameliorate intestinal tumorigenesis. Future Microbiol. 10: 1433-1445.   DOI
31 Pierce JV, Bernstein HD. 2016. Genomic diversity of enterotoxigenic strains of Bacteroides fragilis. PLoS One 11: e0158171.   DOI
32 Nakanishi S, Tanaka M. 2010. Sequence analysis of a bacteriocinogenic plasmid of Clostridium butyricum and expression of the bacteriocin gene in Escherichia coli. Anaerobe. 16: 253-257.   DOI
33 Li S, Konstantinov SR, Smits R, Peppelenbosch MP. 2017. Bacterial biofilms in colorectal cancer initiation and progression. Trends. Mol. Med. 23: 18-30.   DOI
34 Venter H, Mowla R, Ohene-Agyei T, Ma S. 2015. RND-type drug efflux pumps from Gram-negative bacteria: molecular mechanism and inhibition. Front. Microbiol. 6: 377.   DOI
35 Isono A, Katsuno T, Sato T, Nakagawa T, Kato Y, Sato N, et al. 2007. Clostridium butyricum TO-A culture supernatant downregulates TLR4 in human colonic epithelial cells. Dig. Dis. Sci. 52: 2963-2971.   DOI
36 Jia L, Shan K, Pan LL, Feng N, Lv Z, Sun Y, et al. 2017. Clostridium butyricum CGMCC0313.1 Protects against autoimmune diabetes by modulating intestinal immune homeostasis and inducing pancreatic regulatory T cells. Front. Immunol. 8: 1345.   DOI
37 Rabizadeh S, Rhee KJ, Wu S, Huso D, Gan CM, Golub JE, et al. 2007. Enterotoxigenic Bacteroides fragilis: a potential instigator of colitis. Inflamm. Bowel Dis. 13: 1475-1483.   DOI
38 Toprak NU, Yagci A, Gulluoglu BM, Akin ML, Demirkalem P, Celenk T, et al. 2006. A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin. Microbiol. Infect. 12: 782-786.   DOI
39 Zou S, Fang L, Lee MH. 2018. Dysbiosis of gut microbiota in promoting the development of colorectal cancer. Gastroenterol. Rep. (Oxf). 6: 1-12.   DOI
40 Swidsinski A, Weber J, Loening-Baucke V, Hale LP, Lochs H. 2005. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J. Clin. Microbiol. 43: 3380-3389.   DOI
41 Kemgang TS, Kapila S, Shanmugam VP, Kapila R. 2014. Cross-talk between probiotic Lactobacilli and host immune system. J. Appl. Microbiol. 117: 303-319.   DOI
42 Caglar E, Kargul B, Tanboga I. 2005. Bacteriotherapy and probiotics' role on oral health. Oral Dis. 11: 131-137.   DOI
43 FAO/WHO. 2001. Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food: Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria. Rome: Publishing Management Service, Information Division, FAO.
44 Prindiville TP, Sheikh RA, Cohen SH, Tang YJ, Cantrell MC, Silva J, Jr. 2000. Bacteroides fragilis enterotoxin gene sequences in patients with inflammatory bowel disease. Emerg. Infect. Dis. 6: 171-174.   DOI
45 Wexler HM. 2007. Bacteroides: the good, the bad, and the nitty-gritty. Clin. Microbiol. Rev. 20: 593-621.   DOI
46 Kaur S, Sharma P, Kalia N, Singh J, Kaur S. 2018. Antibiofilm properties of the fecal probiotic Lactobacilli against Vibrio spp. Front. Cell. Infect. Microbiol. 8: 120.   DOI
47 Seki H, Shiohara M, Matsumura T, Miyagawa N, Tanaka M, Komiyama A, et al. 2003. Prevention of antibiotic-associated diarrhea in children by Clostridium butyricum MIYAIRI. Pediatr. Int. 45: 86-90.   DOI
48 Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. 2008. Review article: the role of butyrate on colonic function. Aliment. Pharmacol. Ther. 27: 104-119.   DOI
49 Kashiwagi I, Morita R, Schichita T, Komai K, Saeki K, Matsumoto M, et al. 2015. Smad2 and Smad3 Inversely Regulate TGF-beta Autoinduction in Clostridium butyricum-Activated Dendritic Cells. Immunity 43: 65-79.   DOI
50 Kuroiwa T, Kobari K, Iwanaga M. 1990. [Inhibition of enteropathogens by Clostridium butyricum MIYAIRI 588]. Kansenshogaku Zasshi 64: 257-263.   DOI