Browse > Article
http://dx.doi.org/10.4014/jmb.2008.08027

Undecanoic Acid, Lauric Acid, and N-Tridecanoic Acid Inhibit Escherichia coli Persistence and Biofilm Formation  

Jin, Xing (Department of Chemical and Biological Engineering, Illinois Institute of Technology)
Zhou, Jiacheng (Department of Chemical and Biological Engineering, Illinois Institute of Technology)
Richey, Gabriella (Department of Chemical and Biological Engineering, Illinois Institute of Technology)
Wang, Mengya (Department of Chemical and Biological Engineering, Illinois Institute of Technology)
Choi Hong, Sung Min (Department of Chemical and Biological Engineering, Illinois Institute of Technology)
Hong, Seok Hoon (Department of Chemical and Biological Engineering, Illinois Institute of Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.31, no.1, 2021 , pp. 130-136 More about this Journal
Abstract
Persister cell formation and biofilms of pathogens are extensively involved in the development of chronic infectious diseases. Eradicating persister cells is challenging, owing to their tolerance to conventional antibiotics, which cannot kill cells in a metabolically dormant state. A high frequency of persisters in biofilms makes inactivating biofilm cells more difficult, because the biofilm matrix inhibits antibiotic penetration. Fatty acids may be promising candidates as antipersister or antibiofilm agents, because some fatty acids exhibit antimicrobial effects. We previously reported that fatty acid ethyl esters effectively inhibit Escherichia coli persister formation by regulating an antitoxin. In this study, we screened a fatty acid library consisting of 65 different fatty acid molecules for altered persister formation. We found that undecanoic acid, lauric acid, and N-tridecanoic acid inhibited E. coli BW25113 persister cell formation by 25-, 58-, and 44-fold, respectively. Similarly, these fatty acids repressed persisters of enterohemorrhagic E. coli EDL933. These fatty acids were all medium-chain saturated forms. Furthermore, the fatty acids repressed Enterohemorrhagic E. coli (EHEC) biofilm formation (for example, by 8-fold for lauric acid) without having antimicrobial activity. This study demonstrates that medium-chain saturated fatty acids can serve as antipersister and antibiofilm agents that may be applied to treat bacterial infections.
Keywords
E. coli; persister cells; biofilms; medium-chain saturated fatty acids;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wang M, Fang K, Hong SMC, Kim I, Jang IS, Hong SH. 2018. Medium chain unsaturated fatty acid ethyl esters inhibit persister formation of Escherichia coli via antitoxin HipB. Appl. Microbiol. Biotechnol. 102: 8511-8524.   DOI
2 Wood TK, Song S. 2020. Forming and waking dormant cells: the ppGpp ribosome dimerization persister model. Biofilm 2: 100018.   DOI
3 Yang H-T, Chen J-W, Rathod J, Jiang Y-Z, Tsai P-J, Hung Y-P, et al. 2017. Lauric acid is an inhibitor of Clostridium difficile growth in vitro and reduces inflammation in a mouse infection model. Front. Microbiol. 8: 2635.   DOI
4 Yang QE, Walsh TR. 2017. Toxin-antitoxin systems and their role in disseminating and maintaining antimicrobial resistance. FEMS Microbiol. Rev. 41: 343-353.   DOI
5 Yoon BK, Jackman JA, Valle-Gonzalez ER, Cho NJ. 2018. Antibacterial free fatty acids and monoglycerides: biological activities, experimental testing, and therapeutic applications. Int. J. Mol. Sci. 19: 1114.   DOI
6 Zhou J, Velliou E, Hong SH. 2020. Investigating the effects of nisin and free fatty acid combined treatment on Listeria monocytogenes inactivation. LWT 133: 110115.   DOI
7 Krzyzek P, Gosciniak G. 2018. A proposed role for diffusible signal factors in the biofilm formation and morphological transformation of Helicobacter pylori. Turk. J. Gastroenterol. 29: 7-13.   DOI
8 Kumar, P., Lee, J. H., Beyenal, H. and Lee, J. 2020. Fatty acids as antibiofilm and antivirulence agents. Trends Microbiol. 28: 753-768.   DOI
9 Liaw S-J, Lai H-C, Wang W-B. 2004. Modulation of swarming and virulence by fatty acids through the RsbA protein in Proteus mirabilis. Infect. Immun. 72: 6836-6845.   DOI
10 Fujita Y, Matsuoka H, Hirooka K. 2007. Regulation of fatty acid metabolism in bacteria. Mol. Microbiol. 66: 829-839.   DOI
11 Gollan B, Grabe G, Michaux C, Helaine S. 2019. Bacterial persisters and infection: past, present, and progressing. Annu. Rev. Microbiol. 73: 359-385.   DOI
12 Goneau LW, Yeoh NS, MacDonald KW, Cadieux PA, Burton JP, Razvi H, et al. 2014. Selective target inactivation rather than global metabolic dormancy causes antibiotic tolerance in uropathogens. Antimicrob. Agents Chemother. 58: 2089-2097.   DOI
13 Hall CW, Mah T-F. 2017. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol. Rev. 010: 276-301.   DOI
14 Jaishankar J, Srivastava P. 2017. Molecular basis of stationary phase survival and applications. Front. Microbiol. 8: 2000.   DOI
15 McGaw LJ, Jager AK, van Staden J. 2002. Antibacterial effects of fatty acids and related compounds from plants. South Afr. J. Bot. 68: 417-423.   DOI
16 Maisonneuve E, Gerdes K. 2014. Molecular mechanisms underlying bacterial persisters. Cell 157: 539-548.   DOI
17 Marques CNH, Davies DG, Sauer K. 2015. Control of biofilms with the fatty acid signaling molecule cis-2-decenoic acid. Pharmaceuticals 8: 816-835.   DOI
18 Marques CNH, Morozov A, Planzos P, Zelaya HM. 2014. The fatty acid signaling molecule cis-2-decenoic acid increases metabolic activity and reverts persister cells to an antimicrobial-susceptible state. Appl. Environ. Microbiol. 80: 6976-6991.   DOI
19 McKay SL, Portnoy DA. 2015. Ribosome hibernation facilitates tolerance of stationary-phase bacteria to aminoglycosides. Antimicrob. Agents Chemother. 59: 6992-6999.   DOI
20 Olsen I. 2015. Biofilm-specific antibiotic tolerance and resistance. Eur. J. Clin. Microbiol. Infect. Dis. 34: 877-886.   DOI
21 Petrovic S, Arsic A. 2016. Fatty acids: fatty acids. pp. 623-631. In: Encyclopedia of Food and Health, Elsevier Inc.
22 Poole K. 2012. Stress responses as determinants of antimicrobial resistance in Gram-negative bacteria. Trends Microbiol. 20: 227-234.   DOI
23 Shan Y, Lazinski D, Rowe S, Camilli A, Lewis K. 2015. Genetic basis of persister tolerance to aminoglycosides in Escherichia coli. MBio 6: e00078-15.
24 Ranjbar R, Masoudimanesh M, Dehkordi FS, Jonaidi-Jafari N, Rahimi E. 2017. Shiga (Vero)-toxin producing Escherichia coli isolated from the hospital foods virulence factors, o-serogroups and antimicrobial resistance properties. Antimicrob. Resist. Infect. Control 6: 1-11.   DOI
25 Salisbury A-M, Woo K, Sarkar S, Schultz G, Malone M, Mayer DO. et al. 2018. Tolerance of biofilms to antimicrobials and significance to antibiotic resistance in wounds. Surg. Technol. Int. 33: 59-66.
26 Schuster CF, Mechler L, Nolle N, Krismer B, Zelder M-E, Gotz F, et al. 2015. The MazEF toxin-antitoxin system alters the β-lactam susceptibility of Staphylococcus aureus. PLoS One 10: e0126118.   DOI
27 Shao X, Fang K, Medina D, Wan J, Lee JL, Hong SH. 2019. The probiotic, Leuconostoc mesenteroides, inhibits Listeria monocytogenes biofilm formation. J. Food Saf. 40: e12750.
28 Shilling M, Matt L, Rubin E, Visitacion MP, Haller NA, Grey SF, et al. 2013. Antimicrobial effects of virgin coconut oil and its medium-chain fatty acids on Clostridium difficile. J. Med. Food 16: 1079-1085.   DOI
29 Silva LN, Zimmer KR, Macedo AJ, Trentin DS. 2016. Plant natural products targeting bacterial virulence factors. Chem. Rev. 116: 9162-9236.   DOI
30 Song S, Wood TK. 2020. A primary physiological role of toxin/antitoxin systems is phage inhibition. Front. Microbiol. 11: 1895.   DOI
31 Song S, Wood TK. 2020. ppGpp ribosome dimerization model for bacterial persister formation and resuscitation. Biochem. Biophys. Res. Commun. 523: 281-286.   DOI
32 Balcazar JL, Subirats J, Borrego CM. 2015. The role of biofilms as environmental reservoirs of antibiotic resistance. Front. Microbiol. 6: 1216.   DOI
33 Fisher RA, Gollan B, Helaine S. 2017. Persistent bacterial infections and persister cells. Nat. Rev. Microbiol. 15: 453-464.   DOI
34 Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, et al. 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2: 2006.0008.   DOI
35 Balaban NQ, Helaine S, Lewis K, Ackermann M, Aldridge B, Andersson DI, et al. 2019. Definitions and guidelines for research on antibiotic persistence. Nat. Rev. Microbiol. 17: 441-448.   DOI
36 Brown DR. 2019. Nitrogen starvation induces persister cell formation in Escherichia coli. J. Bacteriol. 201: e00622-18.   DOI
37 Bruhn-Olszewska B, Szczepaniak P, Matuszewska E, Kuczynska-Wisnik D, Stojowska-Swedrzynska K, Moruno Algara M. et al. 2018. Physiologically distinct subpopulations formed in Escherichia coli cultures in response to heat shock. Microbiol. Res. 209: 33-42.   DOI
38 Karki P, Mohiuddin SG, Kavousi P, Orman MA. 2020. Investigating the effects of osmolytes and environmental pH on bacterial persisters. Antimicrob. Agents Chemother. 64: e02393-19.
39 Jimenez-Diaz L, Caballero A, Segura A. 2017. Pathways for the degradation of fatty acids in bacteria. pp. 1-23. In: Aerobic Utilization of Hydrocarbons, Oils and Lipids, Springer International Publishing.
40 Jin, X., Kightlinger, W., Kwon, Y.-C. and Hong, S. H. 2018. Rapid production and characterization of antimicrobial colicins using Escherichia coli-based cell-free protein synthesis. Synth. Biol. 3: ysy004.   DOI
41 Kim HS, Ham SY, Jang Y, Sun PF, Park JH, Hoon Lee, .Park HD. 2019. Linoleic acid, a plant fatty acid, controls membrane biofouling via inhibition of biofilm formation. Fuel 253: 754-761.   DOI
42 Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. 2016. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14: 563-575.   DOI
43 Davies DG, Marques CNH. 2009. A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J. Bacteriol. 191: 1393-1403.   DOI
44 Chulluncuy R, Espiche C, Nakamoto J, Fabbretti A, Milon P. 2016. Conformational response of 30S-bound IF3 to A-site binders streptomycin and kanamycin. Antibiotics. 5: 38.   DOI
45 Churchward CP, Alany RG, Snyder LAS. 2018. Alternative antimicrobials: the properties of fatty acids and monoglycerides. Crit. Rev. Microbiol. 44: 561-570.   DOI
46 Ciofu O, Tolker-Nielsen T. 2019. Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents-how P. aeruginosa can escape antibiotics. Front. Microbiol. 10: 913.   DOI
47 Dubois-Brissonnet F, Trotier E, Briandet R. 2016. The biofilm lifestyle involves an increase in bacterial membrane saturated fatty acids. Front. Microbiol. 7: 1673.   DOI
48 Dayrit FM. 2015. The properties of lauric acid and their significance in coconut oil. J. Am. Oil Chem. Soc. 92: 1-15.   DOI
49 Delcour AH. 2009. Outer membrane permeability and antibiotic resistance. Biochim. Biophys. Acta - Proteins Proteomics. 1794: 808-816.   DOI
50 Desbois AP, Smith VJ. 2010. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol. 85: 1629-1642.   DOI
51 Fair RJ, Tor Y. 2014. Antibiotics and bacterial resistance in the 21st century. Perspect. Medicin. Chem. 6: 25-64.   DOI
52 Fang K, Jin X, Hong SH. 2018. Probiotic Escherichia coli inhibits biofilm formation of pathogenic E. coli via extracellular activity of DegP. Sci. Rep. 8: 4939.   DOI