• 제목/요약/키워드: antibacterial mechanism

검색결과 108건 처리시간 0.028초

AcrAB-TolC, a major efflux pump in Gram negative bacteria: toward understanding its operation mechanism

  • Soojin Jang
    • BMB Reports
    • /
    • 제56권6호
    • /
    • pp.326-334
    • /
    • 2023
  • Antibiotic resistance (AR) is a silent pandemic that kills millions worldwide. Although the development of new therapeutic agents against antibiotic resistance is in urgent demand, this has presented a great challenge, especially for Gram-negative bacteria that have inherent drug-resistance mediated by impermeable outer membranes and multidrug efflux pumps that actively extrude various drugs from the bacteria. For the last two decades, multidrug efflux pumps, including AcrAB-TolC, the most clinically important efflux pump in Gram-negative bacteria, have drawn great attention as strategic targets for re-sensitizing bacteria to the existing antibiotics. This article aims to provide a concise overview of the AcrAB-TolC operational mechanism, reviewing its architecture and substrate specificity, as well as the recent development of AcrAB-TolC inhibitors.

9-Meric Peptide Analogs of Defensin-like Antimicrobial Peptide Coprisin with Potent Antibacterial Activities with Bacterial Sell Selectivites

  • Shin, Areum;Lee, Eunjung;Kim, Jin-Kyoung;Bang, Jeong-Kyu;Kim, Yangmee
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권9호
    • /
    • pp.2809-2812
    • /
    • 2014
  • The 43-residue defensin-like peptide coprisin, which is isolated from dung bettle, Copris tripartitus, is a potent antimicrobial peptide. In our previous work, we determined the tertiary structure of coprisin and found that alpha helical region of coprisin from residue 19 to residue 30 is important for its antimicrobial activities. Here, we designed cop12mer and cop9mer analogs of coprisin based on the tertiary structure of coprisin. To investigate the relationship between hydrophobicity and antimicrobial activities and develop the potent peptide antibiotics, we designed cop9mer-1 with substitution of $His^2$ with Trp in cop9mer. The results showed that cop9mer-1 has higher toxicities as well as improved antimicrobial activities compared to cop9mer. In order to reduce the toxicity of cop9mer-1, we designed cop9mer-2 and cop9mer-3 with substitution of $Cys^3$ with Lys or Ser. Substitution of $Cys^3$ with these hydrophilic amino acids results in lower cytotoxicities compared to cop9mer-1. Cop9mer-2 with substitution of $Cys^3$ with Lys in Cop9mer-1 showed high antibacterial activities against drug resistant bacteria without cytotoxicity. Antibiotic action of cop9mer-1 analog appears to involve permeabilization of the bacterial cell membrane while cop9mer-2 and cop9mer-3 may have different mechanism of action. These results imply that that optimum balance in hydrophobicity and hydrophilicity in these 9-meric peptides plays key roles in their antimicrobial activities as well as cytotoxicities.

Antibacterial properties of quinolones

  • Yoshida, Hiroaki
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1997년도 춘계학술대회
    • /
    • pp.40-47
    • /
    • 1997
  • New quinolones generally have a broad antibacterial spectrum against gram-positive, gram-negative, glucose-nonfermenting and anaerobic bacteria. Some of newly developed quinolones have potent activities against S. aureus including MRSA, S.pneumoniae including PRSP, B. fragilis, chlamydiae, mycoplasmas and mycobacteria as well, and show good activities against various strains resistant to antibacterial agents of other classes. Quinolones display postantibiotic effects in vitro and are bactericidal at concentrations similar to or twice that of the minimum inhibitory concentrations (MICs) for susceptible pathogens. In experimental murine infection models including systemic infections with various pathogens such as S. aureus, S. pyogenes, S. pneumoniae, E. coli and P. aeruginosa, quinolones have shown good oral efficacy as well as parenteral efficacy. Good oral absorption and good tissue penetration of quinolones account for good therapeutic effects in clinical settings. The target of quinolones are two structurally related type II topoisomerases, DNA gyrase and DNA topoisomerase IV. Quinolones are shown to stabilize the ternary quinolone-gyrase-DNA complex and inhibit the religation of the cleaved double-stranded DNA. Bacteria can acquire resistance to quinolones by mutations of these target enzymes. Mutation sites and amino acid changes in DNA gyrase and DNA topoisomerase IV are similar in the organisms examined, suggesting that the mechanism of quinolone resistance in the target enzymes is essentially the same among various organisms. Quinolones act on both the target enzymes to different degrees depending on the organisms or agents tested, and bacteria become highly resistant to quinolones in a step-wise fashion. Incomplete cross-resistance among quinolones in some strains of E. coli and S. aureus suggests the possibility of finding quinolones active against quinolone-resistant strains which are prevailing now. To find such quinolones, the potency toward two target enzymes and the membrane permeability including influx and/or efflux systems should be taken into account.

  • PDF

Effect of the Ag3PO4 on Staphylococcus aureus Growth and Human Immunity

  • Kim, Mi Kyung;Kim, Dae-Sik
    • 대한의생명과학회지
    • /
    • 제24권1호
    • /
    • pp.30-34
    • /
    • 2018
  • Silver (Ag) has been widely used in commercial products and medical fields since ancient times because of its antibacterial effect. It is harmless and non-toxic to the human body. For this reason, recent research has actively evaluated antimicrobial activity using silver (Ag). In this study, we investigated the inhibitory effect of a silver-based compound, silver phosphate ($Ag_3PO_4$) on the growth of Staphylococcus aureus and the activation of human immunity. First, the inhibitory effect of $Ag_3PO_4$ on the growth of Staphylococcus aureus was confirmed by a growth curve and a colonyounting method. As a result, the growth inhibitory effect increased as the concentration of $Ag_3PO_4$ increased. Specifically, treatment with $5{\mu}g/mL$ of $Ag_3PO_4$ resulted in no bacteria growth, and the colony-counting method showed a remarkable inhibition. In addition, the expression of cytokine IL-8 by $Ag_3PO_4$ was examined to investigate the cellular immune system activation by $Ag_3PO_4$. After pretreatment of Staphylococcus aureus for 1 hour with $50{\mu}g/mL$ $Ag_3PO_4$, an increased IL-8 mRNA expression resulted. In cells treated with $Ag_3PO_4$, we found that the expression of IL-8 was enhanced in a time-dependent fashion compared to non-treated cells. These results indicate that $Ag_3PO_4$ induces antimicrobial activity against Staphylococcus aureus and activates human immunity. These results are expected to contribute to the future study of the mechanism of silver (Ag) and silver-based compounds in relation to antibacterial activity.

저분자량 수용성 키토산의 항균 활성에 관한 연구 (Antibacterial Activity of Low Molecular Weight Water-Soluble Chitosan)

  • 박윤경;나재운
    • 폴리머
    • /
    • 제35권5호
    • /
    • pp.419-423
    • /
    • 2011
  • 항균제 대체제로 응용하기 위하여 다양한 저분자량 수용성 키토산(LMWSC; MW1, MW3, MW5, MW10)을 제조하였으며, 이들의 항균제 대체제 사용 가능여부와 그 작용 기작에 대하여 연구하였다. 먼저, 다양한 분자량 형태의 LMWSC를 이용하여 사람에게 유해한 각종 박테리아를 이용하여 항균효과를 확인하였고, 그 중 MW10의 항균효과가 가장 우수한 것으로 확인되었다. 그 반면 사람의 적혈구를 이용한 용혈활성 실험에서 독성을 나타내지 않았다. MW10의 항균 효과가 세균의 어느 부분에서 일어나는지 확인하기 위해 박테리아의 세포막 조건(PE/PG=7/3, w/w)으로 인공리포좀을 만들었고, 여기에 MW10을 처리한 결과 세균 막에서 항균효과를 나타냄을 추론할 수 있었다.

Characterization and antimicrobial efficacy of Portland cement impregnated with silver nanoparticles

  • Nam, Ki Young
    • The Journal of Advanced Prosthodontics
    • /
    • 제9권3호
    • /
    • pp.217-223
    • /
    • 2017
  • PURPOSE. This study investigated the effects of silver nanoparticle (SN) loading into hydraulic calcium silicate-based Portland cement on its mechanical, antibacterial behavior and biocompatibility as a novel dental bone substitute. MATERIALS AND METHODS. Chemically reduced colloidal SN were combined with Portland cement (PC) by the concentrations of 0 (control), 1.0, 3.0, and 5.0 wt%. The physico-mechanical properties of silver-Portland cement nanocomposites (SPNC) were investigated through X-ray diffraction (XRD), setting time, compressive strength, solubility, and silver ion elution. Antimicrobial properties of SPNC were tested by agar diffusion against Streptococcus mutans and Streptococcus sobrinus. Cytotoxic evaluation for human gingival fibroblast (HGF) was performed by MTS assay. RESULTS. XRD certified that SN was successfully impregnated in PC. SPNC at above 3.0 wt% significantly reduced both initial and final setting times compared to control PC. No statistical differences of the compressive strength values were detected after SN loadings, and solubility rates of SPNC were below 3.0%, which are acceptable by ADA guidelines. Ag ion elutions from SPNC were confirmed with dose-dependence on the concentrations of SN added. SPNC of 5.0 wt% inhibited the growth of Streptococci, whereas no antimicrobial activity was shown in control PC. SPNC revealed no cytotoxic effects to HGF following ISO 10993 (cell viability > 70%). CONCLUSION. Addition of SN promoted the antibacterial activity and favored the bio-mechanical properties of PC; thus, SPNC could be a candidate for the futuristic dental biomaterial. For clinical warrant, further studies including the inhibitory mechanism, in vivo and long-term researches are still required.

소목 추출물의 구조분석 (A Study on the Component Analysis of Sappan Wood Extracts)

  • 이상락;김인회;남성우
    • 한국염색가공학회지
    • /
    • 제14권4호
    • /
    • pp.229-239
    • /
    • 2002
  • Colorants were extracted from the heartwood of sappan lin. with MeOH under reflux, and the concentrate or the powder of dye was prepared by low pressure concentration method using suitable organic solvent. Various components were isolated from sappan wood, and the chemical structure and mechanism of compound having the excellent antibacterial and deodorization properties were analyzed. The results obtained are as follows ; The seventeen components of sappan wood were seperated by HPLC chromatography, and the five components among them were existed more than 6% and the other components were existed lower than 0.6%. The resolving powers of the non-polar solvent and polar solvent systems were evaluated by their ability to resolve the samples. It showed that chloroform-methanol-water(800:150:10) system has the best resolving power. Although the seperation rate is very slow, polyamide C-100 column chromatography gives a clear seperation of sappan wood. On the basis of the spectrometric data such as IR, UV, $GC-Mass,\;^1H-NMR,\;^{13}C-NMR\;and\;^1H-^{ 13}C-NMR$, the chemical structure of compound haying the excellent antibacterial and deodorization properties was established as brazilin containing the functional groups such as two quaternary carbon, one benzyl carbon, methylene contiguous to oxygen and methylene caused by oxygen atom.

Proteomic Assessment of Dung Beetle, Copris tripartitus Immune Response

  • Suh, Hwa-Jin;Bang, Hea-Son;Kim, Seong-Ryul;Yun, Eun-Young;Park, Kwan-Ho;Kang, Bo-Ram;Kim, Ik-Soo;Jeon, Jae-Pil;Hwang, Jae-Sam
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제17권2호
    • /
    • pp.217-221
    • /
    • 2008
  • Dung beetle larvae at the $3^{rd}$ instar were injected with lipopolysaccaride and inducible proteins were examined within a pI level of 3-10 and a size level by proteomics, including 1-D SDS PAGE analysis and antibacterial assay. The immune infected larvae extracts provided seven protein bands in one-dimensional electrophoresis and its antibacterial activity also checked. Hemolymph protein from immune infected larvae of the dung beetle were separated by twodimensional gel electrophoresis and compared with those from native larvae. In 2-D gel electrophoresis, we detected 63 immune infected unique and 32 up-regulated proteins, and 36 proteins that were down-regulated or not present in treated gel. Ten protein spots from unique proteins and those presented as different level of abundance in infected and native larvae were specially expressed. These differentially expressed proteins were proposed to be involved in the defense mechanism against microorganism.

면(棉)과 나일론 직물(織物)의 괴화 염색(槐花 染色)에서 Chitosan 처리(處理)와 매염(媒染)이 공기투과도(空氣透過度), 견뢰도(堅牢度) 및 항균성(抗菌性)에 미치는 영향(影響) (Effect of Chitosan and Mordant Treatments on the Air-permeability, Fastness and Antimicrobial Effect of Cotton and Nylon Fabrics Dyed using Japanese Pagoda Tree)

  • 황희연;전동원
    • 패션비즈니스
    • /
    • 제10권2호
    • /
    • pp.27-39
    • /
    • 2006
  • In this study, physical/chemical characteristics of the fabrics dyed using Japanese pagoda tree which is a yellowish dyestuff was investigated. We tried to estimate the dyeing mechanism among fiber macromolecules, mordants, chitosan, and dyestuffs by measuring the change of air-permeability according to the dyeing process. Also wash fastness and light fastness were measured in order to estimate the fastness according to the dyeing characteristics. When the chitosan pre-treatment was introduced, the wash fastness increased significantly in the cotton fabrics while the fastness did not change in the nylon fabrics significantly. The light fastness was not improved by the chitosan treatment. when the antibacterial activity was measured for the dyed cotton fabrics, Japanese pagoda tree itself did not exhibit antibacterial activity. However, chitosan treated dyed fabrics exhibited low antimicrobial activity.

Mutans streptococci에 대한 polyphosphate의 항균효과 (ANTIBACTERIAL EFFECT OF POLYPHOSPHATES ON MUTANS STREPTOCOCCI)

  • 강계숙;최영철
    • 대한소아치과학회지
    • /
    • 제30권1호
    • /
    • pp.80-91
    • /
    • 2003
  • 치아우식증의 원인균인 S. mutans GS5와 S. sobrinus 6715에 대한 polyP의 효과를 관찰하여 보다 안전하고 효과적인 치아우식증 예방을 위한 임상적용의 가능성을 고찰하고자 첫째, 다양한 사슬길이의 polyP를 첨가한 후 흡광도를 측정하여 MIC를 결정하고, 둘째, 실험균주를 흡광도 $0.3{\sim}0.5$까지 증식시킨 후 MIC 농도의 polyP를 첨가하여 흡광도의 변화를 측정함으로써 균주증식 후 성장 억제효과를 관찰하였으며, 셋째, 생균수 측정으로 polyP의 항균효과를 평가하였고, 넷째, 핵산유리의 정도로 polyP의 킬레이션 작용여부를 관찰하였으며, 다섯째, polyP의 비수용성 글루칸 합성능력을 관찰하였으며, 여섯째, 투과전자현미경으로 세포막과 세포질 내의 구조적 변화를 관찰하였다. 이상의 연구를 통하여, polyP의 살균작용이 S. mutans와 S. sobrinus에 대한 성장을 억제시키는 효과가 있는 것으로 가늠된다. 이와 같은 성장 억제효과는 polyP의 킬레이션에 의한 것이라기보다는 균주 세포의 구조적, 형태적 변화가 주된 요인이었던 것으로 판단된다.

  • PDF