• Title/Summary/Keyword: anti-yeast

Search Result 212, Processing Time 0.033 seconds

Oak Wood Vinegar Suppresses the Expression of Cyclooxygenase-2 Induced by TLR4 Agonist

  • Yun, Sae-Mi;Park, Se-Jeong;Lee, A-Neum;Ahn, Sang-Il;Youn, Hyung-Sun
    • Biomedical Science Letters
    • /
    • v.15 no.3
    • /
    • pp.257-260
    • /
    • 2009
  • Toll-like receptors (TLRs) recognize molecular structures derived from microbes including bacteria, viruses, yeast, and fungi. TLRs have emerged as a major signaling component of the mammalian host defense. TLR4 is a member of the Toll family that senses lipopolysaccharide (LPS), a cell wall component of gram negative bacteria. LPS recognition by TLR4 requires an additional accessory molecule, MD-2. LPS induces the activation of NF-${\kappa}B$ and IRF3 through MyD88 or TRIF-dependent pathways. The activation of NF-${\kappa}B$ leads to the induction of inflammatory gene products including cytokines and cyclooxygenase-2 (COX-2). This study was carried out to investigate the anti-inflammatory effects of oak wood vinegar. Oak wood vinegar inhibits the NF-${\kappa}B$ activation and COX-2 expression induced by LPS. These results provide new ideas to understand the mechanism of oak wood vinegar for its anti-bacterial and anti-inflammatory activities.

  • PDF

Phospholipase D and Its Essential Role in Cancer

  • Cho, Ju Hwan;Han, Joong-Soo
    • Molecules and Cells
    • /
    • v.40 no.11
    • /
    • pp.805-813
    • /
    • 2017
  • The role of phospholipase D (PLD) in cancer development and management has been a major area of interest for researchers. The purpose of this mini-review is to explore PLD and its distinct role during chemotherapy including anti-apoptotic function. PLD is an enzyme that belongs to the phospholipase super family and is found in a broad range of organisms such as viruses, yeast, bacteria, animals, and plants. The function and activity of PLD are widely dependent on and regulated by neurotransmitters, hormones, small monomeric GTPases, and lipids. A growing body of research has shown that PLD activity is significantly increased in cancer tissues and cells, indicating that it plays a critical role in signal transduction, cell proliferation, and anti-apoptotic processes. In addition, recent studies show that PLD is a downstream transcriptional target of proteins that contribute to inflammation and carcinogenesis such as Sp1, $NF{\kappa}B$, TCF4, ATF-2, NFATc2, and EWS-Fli. Thus, compounds that inhibit expression or activity of PLD in cells can be potentially useful in reducing inflammation and sensitizing resistant cancers during chemotherapy.

Bio-fermentation Technology to Improve Efficiency of Swine Nutrition

  • Kim, Sung Woo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.6
    • /
    • pp.825-832
    • /
    • 2010
  • The United Nations Convention on Biological Diversity defines biotechnology as "Any technological application that uses biological systems, dead organisms, or derivatives thereof, to make or modify products or processes for specific use" Biotechnology has made tremendous contributions to improve production efficiency of agriculture during the last century. This article reviews successful examples of application of bio-fermentation in improving swine nutrition efficiency mainly based on the authors'z own research experience. Production of feed grade supplemental amino acids by bio-fermentation allowed nutritionists to formulate accurate feed for optimal lean growth and reduced nitrogen excretion. Recent issues with high feed grain prices caused potential feed quality problems. Bio-fermentation allowed nutritionists to use exogenous supplemental enzymes such as phytase and NSPases in swine diets, thereby improving nutrient utilization and reducing nutrient excretion to the environment. Yeast metabolites are also produced by bio-fermentation and have been repeatedly shown to improve milk production of sows during early lactation even though actual mechanisms are still to be investigated. Bio-fermentation technology also allowed nutritionists to prepare vegetable protein sources with large protein molecules and anti-nutritional factors suitable for feeding newly weaned piglets, as selected microorganisms significantly reduce specific anti-nutritional factors and size of peptides. Preparations of vegetable protein sources suitable for newly weaned pigs will greatly contribute to swine nutrition by providing efficient alternatives to the use of animal protein sources that are often expensive and somewhat against societal preference. Considering the few examples listed above, biotechnology has closely influenced improvement of production efficiency in the swine industry. As we have limited resources to produce meat to satisfy ever-increasing global demands, extensive adaptation of biotechnology to enhance production efficiency should be continued. However, at the same time, wise and careful application of bio-technology should be considered to ensure production of safe food and to meet the expectations of our society.

Effects of Probiotic Fermented Fruit Juice-Based Biotransformation by Lactic Acid Bacteria and Saccharomyces boulardii CNCM I-745 on Anti-Salmonella and Antioxidative Properties

  • Laosee, Wanida;Kantachote, Duangporn;Chansuwan, Worrapanit;Sirinupong, Nualpun
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.10
    • /
    • pp.1315-1324
    • /
    • 2022
  • Fermentation is an effective process for providing various beneficial effects in functional beverages. Lactic acid bacteria and yeast fermentation-based biotransformation contribute to enhancement of nutritional value and digestibility, including lactose intolerance reduction and control of infections. In this study, the probiotic fermented fruit juice (PFJ) was produced by Lactobacillus plantarum TISTR 1465, Lactobacillus salivarius TISTR 1112, and Saccharomyces boulardii CNCM I-745 while mixed fruit juice (MFJ) was used as the basic medium for microorganism growth. The potential function, the anti-salmonella activity of PFJ, was found to be effective at 250 mg/ml of MIC and 500 mg/ml of MBC. Biofilm inhibition was performed using the PFJ samples and showed at least 70% reduction in cell attachment at the MIC concentration of Salmonella Typhi DMST 22842. The antioxidant activities of PFJ were determined and the results revealed that FSB.25 exhibited 78.40 ± 0.51 mM TE/ml by FRAP assay, while FPSB.25 exhibited 3.44 ± 0.10 mM TE/ml by DPPH assay. The volatile compounds of PFJ were characterized by GC-MS, which identified alcohol, aldehyde, acid, ester, ketone, phenol, and terpene. The most abundant organic acid and alcohol detected in PFJ were acetic acid and 2-phenylethanol, and the most represented terpene was β-damascenone. The sensory attributes showed scores higher than 7 on a 9-point hedonic scale for the FPB.25, illustrating that it was well accepted by panelists. Taken together, our results showed that PFJ could meet current consumer demand regarding natural and functional, fruit-based fermented beverages.

Antimicrobial, Anti-inflammatory, and Anti-oxidative Effects of Water- and Ethanol-extracted Brazilian Propolis

  • Kim, Kee-Tae;Yeo, Eun-Ju;Han, Ye-Sun;Nah, Seung-Yeol;Paik, Hyun-Dong
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.474-478
    • /
    • 2005
  • Because it possesses anti-inflammatory, antifungal, antiviral, and tissue regenerative properties, propolis has been used for thousands of years in folk medicine for multiple purposes. Although the antimicrobial activity of propolis has already been demonstrated, very few studies have been conducted on bacteria of clinical relevance in dentistry. The aim of this study is to evaluate the antimicrobial, anti-inflammatory, and anti-oxidative activities of 0.1% and 1.0% propolis, both of water-extracted (proAQ) and ethanol-extracted (proAL) propolis, for industrial applications. In studies of antimicrobial activity, the growth of Staphylococcus aureus ATCC 35556, Salmonella enteritidis ATCC 12021, Escherichia coli O157:H7, and Candida parapsilosis KCCM 35428, all general food or clinical pathogens, were tested. The culture medium used was trypticase soy broth including 0.6% yeast extract; after 6 hr of incubation, the turbidities were measured at 620 nm with a spectrophotometer. The results indicate that the antimicrobial effects of both 1.0% proAQ and 1.0% proAL were greater against the growth of S. aureus ATCC 35556 and C. parapsilosis KCCM 35428 rather than those of S. enteritidis ATCC 12021 and E. coli O157:H7. Additionally, it appears that the anti-inflammatory effects of proAL are greater than those of proAQ. The anti-inflammatory effects were evaluated by measurement of the inhibition of hyaluronidase activity in vitro. At a 1% concentration, the anti-inflammatory effects of proAL were greater than those of proAQ. Finally, the anti-oxidative effects of 1% and 10% solutions of each extract sample were measured according to the TBA method at $40^{\circ}C$ for 1, 2, 3, and 5 days and were compared with 1.0% BHT. The results indicate that the anti-oxidative effects at 0.1% for both proAQ and proAL were not significantly different than the anti-oxidative effects at 1.0% BHT (p<0.05). Thus, it appeared that the alcohol-extracted propolis had greater antimicrobial, anti-inflammatory, and anti-oxidative effects than the water-extracted propolis. This is based on the presumption that major biofunctional components were fat-soluble, rather than water-soluble.

경기만에서 석유분해세균의 분포 및 석유분해능

  • 이정래;황열순;이기승;이건형;김상종
    • Korean Journal of Microbiology
    • /
    • v.30 no.3
    • /
    • pp.187-192
    • /
    • 1992
  • The spatial and temporal distribution of petroleum-degrading bacteria(PDB) was studied at six sampling sites in Kyeonggi Bay of the Yellow Sea fiom March 1990 to October 1991. In addition, petroleum-degrading potcntial of natural ~iiai-ineb acterial population was studied at different culturc contlitions. During the period o f stutly. thc heterotrophic bacterial number and PDB number were n1e;rsured in the range of 7 000-108.400 CFU/nil. 0-2.800 MPN1100 mi. respectively. The spatial tlistribution of PDB wa\ highly affected by presence of petroleum hydrocarbon. In laboratory cxperirncnt. petrolcu~n biodegradation wac enhanced hy addition of yeast cxtracl. cell free cxtr:~ct. anti rnixctl culture of PI)B.

  • PDF

Fibrinolytic Enzyme Production by Bacillus subtilis KH-4 Isolated from Deonjang

  • Kim, J.M.;Suh, H.J.;Ahn, S.W.;Kim, M.S.;Oh, S.H.
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.4
    • /
    • pp.417-420
    • /
    • 2002
  • A strong fibrin-specific fibrinolytic enzyme was produced from Bacillus subtilis KH-4 isolated from Deonjang, a Korean fermented soybean paste similar to Japanese miso. The addition of glucose as a carbon source resulted in the highest levels of caseinolytic and fibrinolytic activities. Likewise, the addition of yeast extract as the nitrogen source resulted in the highest caseinolytic and fibrinolytic activities (3473.2 unit and 47.4 munit, respectively), It was observed that out of all metal ion sources only calcium (chloride) enhanced caseinolytic and fibrinolytic activities, with increases of 4949.3 unit and 58.2 unit/mg, respectively. The optimal temperature for the production of the enzyme was found to be 4$0^{\circ}C$ in the optimal medium (glucose 20 g, yeast extract 5 g, CaCl$_2$l g, and NaCl 2 g). The maximum fibrinolytic activity was observed at the late stationary phase. B. subtilis KH-4 produced a fibrinolytic enzyme at 4$0^{\circ}C$, after 30 h growth, which increased up to 54 h and then remained constant. These results suggest that Deonjang has potential as a source of physiologically active anti-thromotic enzymes.

Isolation and Identification of Streptomyces sp. Producing Anti-vancomycin Resistant Staphylococcus aureus Substance (반코마이신 내성 Staphylococcus aureus 억제 물질 생산 Streptomyces sp.의 분리 및 동정)

  • Oh Se-Teak;Lee Jun-Jae;Lee Ji-Youn;Kim Jin-Kyu;Yang Si-Yong;Kim Yang-Soo;Song Min-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.2
    • /
    • pp.90-95
    • /
    • 2005
  • An Actinomycetes producing an anti-VRSA (vancomycin-resistant Staphylococcus aureus) substance was isolated from soil. The cultural, morphological, physiological and phylogenetic analyses of an isolated strain were investigated for identification. Cultural characteristics based on ISP (International Streptomyces Project) were as follows: white aerial mycelium, yellow reverse side, and good growth on various medium. Also, the isolate did not produce the soluble pigment. Morphological characteristics were showed cylindrical spore chain and smooth spore surface by SEM (Scanning Electron Microscope). Physiological characteristics were showed LL-type by DAP isomer analysis and detected glycine, glutamic acid and alanine. A phylogenetic analysis of the 16S rDNA provided a clue that the isolated strain was actually a member of the genus Streptomyces, because the determined sequence exhibited a higher homology with Streptomyces echinatus. The isolate was identified to be a genus of Streptomyces sp.. The optimal culture conditions for the maximum production of anti-VRSA substance by Streptomyces sp. were attained in a culture medium composed of $2.0\%$ (w/v) glucose, and $0.4\%$ (w/v) yeast extract. The anti-VRSA substance was highly produced after 5 days of culture. Optimal pH and temperature conditions for the production of anti-VRSA substance were pH 7.0 and $28^{\circ}C$, respectively.

Immunostimulating Activity of Beta-Glucan Isolated from the Cell Wall of Mutant Saccharomyces cerevisiae, and Its Anti-Tumor Application in Combination with Cisplatin (Saccharomyces cerevisiae 변이주 세포벽 유래의 베타글루칸의 면역활성 및 Cisplatin과의 병용에 의한 항암 상승작용)

  • Kim, Wan-Jae;Yoon, Taek-Joon;Kim, Dong-Woo;Moon, Won-Kook;Lee, Kwang-Ho
    • The Korean Journal of Food And Nutrition
    • /
    • v.23 no.2
    • /
    • pp.141-146
    • /
    • 2010
  • Cisplatin(cis-diamminedichloroplatium) is one of the most effective anti-cancer drugs being clinically used in the treatment of solid tumors. Despite its therapeutic benefits, its use in clinical practice is often limited because of dose related toxicity. It is known that yeast cell wall beta-glucans possess immuno-modulating properties, which allows for their application in antitumor therapy. IS2 is a kind of beta-glucan derived from the cell wall of mutated Saccharomyces cerevisiae, which exhibits anti-cancer activity in vitro and in vivo. The present study explored the possibility of combination therapy of IS2 with cisplatin. In experimental metastasis of colon26-M3.1 cells, prophylactic intravenous administration of IS-2 in combination with cisplatin effectively inhibited tumor metastasis compared with cisplatin alone or IS-2 treatment in vivo. IS-2 effectively enhanced Th1 type cytokines including IFN-$\gamma$, IL-2, IL-12 and GM-CSF. Simultaneously, this combined treatment inhibited production of Th2 type cytokines compared with control. These results suggested that IS-2 can be applied in combination therapy with anti-cancer drugs to minimize their side effects.

Anti-Inflammatory Activity of Antimicrobial Peptide Periplanetasin-5 Derived from the Cockroach Periplaneta americana

  • Kim, In-Woo;Lee, Joon Ha;Seo, Minchul;Lee, Hwa Jeong;Baek, Minhee;Kim, Mi-Ae;Shin, Yong Pyo;Kim, Sung Hyun;Kim, Iksoo;Hwang, Jae Sam
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1282-1289
    • /
    • 2020
  • Previously, we performed an in silico analysis of the Periplaneta americana transcriptome. Antimicrobial peptide candidates were selected using an in silico antimicrobial peptide prediction method. It was found that periplanetasin-5 had antimicrobial activity against yeast and gram-positive and gram-negative bacteria. In the present study, we demonstrated the anti-inflammatory activities of periplanetasin-5 in mouse macrophage Raw264.7 cells. No cytotoxicity was observed at 60 ㎍/ml periplanetasin-5, and treatment decreased nitric oxide production in Raw264.7 cells exposed to lipopolysaccharide (LPS). In addition, quantitative RT-PCR and enzyme-linked immunosorbent assay revealed that periplanetasin-5 reduced cytokine (tumor necrosis factor-α, interleukin-6) expression levels in the Raw264.7 cells. Periplanetasin-5 controlled inflammation by inhibiting phosphorylation of MAPKs, an inflammatory signaling element, and reducing the degradation of IκB. Through LAL assay, LPS toxicity was found to decrease in a periplanetasin-5 dose-dependent manner. Collectively, these data showed that periplanetasin-5 had anti-inflammatory activities, exemplified in LPS-exposed Raw264.7 cells. Thus, we have provided a potentially useful antibacterial peptide candidate with anti-inflammatory activities.