Browse > Article
http://dx.doi.org/10.14348/molcells.2017.0241

Phospholipase D and Its Essential Role in Cancer  

Cho, Ju Hwan (Arthur G. James Cancer Hospital Comprehensive Cancer Center, The Ohio State University)
Han, Joong-Soo (Biomedical Research Institute and Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University)
Abstract
The role of phospholipase D (PLD) in cancer development and management has been a major area of interest for researchers. The purpose of this mini-review is to explore PLD and its distinct role during chemotherapy including anti-apoptotic function. PLD is an enzyme that belongs to the phospholipase super family and is found in a broad range of organisms such as viruses, yeast, bacteria, animals, and plants. The function and activity of PLD are widely dependent on and regulated by neurotransmitters, hormones, small monomeric GTPases, and lipids. A growing body of research has shown that PLD activity is significantly increased in cancer tissues and cells, indicating that it plays a critical role in signal transduction, cell proliferation, and anti-apoptotic processes. In addition, recent studies show that PLD is a downstream transcriptional target of proteins that contribute to inflammation and carcinogenesis such as Sp1, $NF{\kappa}B$, TCF4, ATF-2, NFATc2, and EWS-Fli. Thus, compounds that inhibit expression or activity of PLD in cells can be potentially useful in reducing inflammation and sensitizing resistant cancers during chemotherapy.
Keywords
anti-cancer drug; apoptosis; cancer; inhibitor; PLD;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Cho, J.H., Hong, S.K., Kim, E.Y., Park, S.Y., Park, C.H., Kim, J.M., Kwon, O.J., Kwon, S.J., Lee, K.S., and Han, J.S. (2008). Overexpression of phospholipase D suppresses taxotere-induced cell death in stomach cancer cells. Biochim. Biophys. Acta 1783, 912-923.   DOI
2 Cho, J.H., Oh, D.Y., Kim, H.J., Park, S.Y., Choi, H.J., Kwon, S.J., Lee, K.S., and Han, J.S. (2011). The TSP motif in AP180 inhibits phospholipase D1 activity resulting in increased efficacy of anticancer drug via its direct binding to carboxyl terminal of phospholipase D1. Cancer Lett. 302, 144-154.   DOI
3 Choi, W.S., Chahdi, A., Kim, Y.M., Fraundorfer, P.F., and Beaven, M.A. (2002). Regulation of phospholipase D and secretion in mast cells by protein kinase A and other protein kinases. Ann. N Y Acad. Sci. 968, 198-212.   DOI
4 Farooqui, A.A., and Horrocks, L.A. (2005). Signaling and interplay mediated by phospholipases A2, C, and D in LA-N-1 cell nuclei. Reprod. Nutr. Dev. 45, 613-631.   DOI
5 Fite, K., Elkhadragy, L., and Gomez-Cambronero, J. (2016). A repertoire of microRNAs regulates cancer cell starvation by targeting phospholipase D in a feedback loop that operates maximally in cancer cells. Mol. Cell. Biol. 36, 1078-1089.   DOI
6 Foster, D.A., Salloum, D., Menon, D., and Frias, M.A. (2014). Phospholipase D and the maintenance of phosphatidic acid levels for regulation of mammalian target of rapamycin (mTOR). J. Biol. Chem. 289, 22583-22588.   DOI
7 Choi, H.J., Lee, J.H., Park, S.Y., Cho, J.H., and Han, J.S. (2009). STAT3 is involved in phosphatidic acid-induced Bcl-2 expression in HeLa cells. Exp. Mol. Med. 41, 94-101.   DOI
8 Pannequin, J., Delaunay, N., Darido, C., Maurice, T., Crespy, P., Frohman, M.A., Balda, M.S., Matter, K., Joubert, D., Bourgaux, J.F., et al. (2007). Phosphatidylethanol accumulation promotes intestinal hyperplasia by inducing ZONAB-mediated cell density increase in response to chronic ethanol exposure. Mol. Cancer Res. 5, 1147-1157.   DOI
9 Park, M.H., Ahn, B.H., Hong, Y.K., and Min do, S. (2009). Overexpression of phospholipase D enhances matrix metalloproteinase-2 expression and glioma cell invasion via protein kinase C and protein kinase A/NF-kappaB/Sp1-mediated signaling pathways. Carcinogenesis 30, 356-365.   DOI
10 Choi, W.S., Hiragun, T., Lee, J.H., Kim, Y.M., Kim, H.P., Chahdi, A., Her, E., Han, J.W., and Beaven, M.A. (2004). Activation of RBL-2H3 mast cells is dependent on tyrosine phosphorylation of phospholipase D2 by Fyn and Fgr. Mol. Cell. Biol. 24, 6980-6992.   DOI
11 Colley, W.C., Sung, T.C., Roll, R., Jenco, J., Hammond, S.M., Altshuller, Y., Bar-Sagi, D., Morris, A.J., and Frohman, M.A. (1997). Phospholipase D2, a distinct phospholipase D isoform with novel regulatory properties that provokes cytoskeletal reorganization. Curr. Biol. 7, 191-201.   DOI
12 Corrotte, M., Chasserot-Golaz, S., Huang, P., Du, G., Ktistakis, N.T., Frohman, M.A., Vitale, N., Bader, M.F., and Grant, N.J. (2006). Dynamics and function of phospholipase D and phosphatidic acid during phagocytosis. Traffic 7, 365-377.   DOI
13 Gomez-Cambronero, J. (2010). New concepts in phospholipase D signaling in inflammation and cancer. TheScientificWorldJournal 10, 1356-1369.   DOI
14 Frohman, M.A. (2015). The phospholipase D superfamily as therapeutic targets. Trends Pharmacol. Sci. 36, 137-144.   DOI
15 Ghim, J., Moon, J.S., Lee, C.S., Lee, J., Song, P., Lee, A., Jang, J.H., Kim, D., Yoon, J.H., Koh, Y.J., et al. (2014). Endothelial deletion of phospholipase D2 reduces hypoxic response and pathological angiogenesis. Arterioscler. Thromb. Vasc. Biol. 34, 1697-1703.   DOI
16 Gobel, K., Schuhmann, M.K., Pankratz, S., Stegner, D., Herrmann, A.M., Braun, A., Breuer, J., Bittner, S., Ruck, T., Wiendl, H., et al. (2014). Phospholipase D1 mediates lymphocyte adhesion and migration in experimental autoimmune encephalomyelitis. Eur. J. Immunol. 44, 2295-2305.   DOI
17 Gozgit, J.M., Pentecost, B.T., Marconi, S.A., Ricketts-Loriaux, R.S., Otis, C.N., and Arcaro, K.F. (2007). PLD1 is overexpressed in an ER-negative MCF-7 cell line variant and a subset of phospho-Akt-negative breast carcinomas. Br. J. Cancer 97, 809-817.   DOI
18 Preininger, A.M., Henage, L.G., Oldham, W.M., Yoon, E.J., Hamm, H.E., and Brown, H.A. (2006). Direct modulation of phospholipase D activity by Gbetagamma. Mol. Pharmacol. 70, 311-318.
19 Park, J.B., Lee, C.S., Jang, J.H., Ghim, J., Kim, Y.J., You, S., Hwang, D., Suh, P.G., and Ryu, S.H. (2012). Phospholipase signalling networks in cancer. Nat. Rev. Cancer 12, 782-792.   DOI
20 Pedraza-Farina, L.G. (2006). Mechanisms of oncogenic cooperation in cancer initiation and metastasis. Yale J. Biol. Med, 79, 95-103.
21 Pyne, S., and Pyne, N.J. (2000). Sphingosine 1-phosphate signalling in mammalian cells. Biochem. J. 349, 385-402.   DOI
22 Saito, M., Iwadate, M., Higashimoto, M., Ono, K., Takebayashi, Y., and Takenoshita, S. (2007). Expression of phospholipase D2 in human colorectal carcinoma. Oncol. Rep. 18, 1329-1334.
23 Samaras, V., Rafailidis, P.I., Mourtzoukou, E.G., Peppas, G., and Falagas, M.E. (2010). Chronic bacterial and parasitic infections and cancer: a review. J. Infect. Dev. Ctries. 4, 267-281.
24 DeVita, V.T., Jr. (2002). A perspective on the war on cancer. Cancer J. 8, 352-356.   DOI
25 Cruchaga, C., Karch, C.M., Jin, S.C., Benitez, B.A., Cai, Y., Guerreiro, R., Harari, O., Norton, J., Budde, J., Bertelsen, S., et al. (2014). Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer's disease. Nature 505, 550-554.   DOI
26 Csaki, L.S., Dwyer, J.R., Fong, L.G., Tontonoz, P., Young, S.G., and Reue, K. (2013). Lipins, lipinopathies, and the modulation of cellular lipid storage and signaling. Prog. Lipid Res. 52, 305-316.   DOI
27 Cunningham, D., Atkin, W., Lenz, H.J., Lynch, H.T., Minsky, B., Nordlinger, B., and Starling, N. (2010). Colorectal cancer. Lancet 375, 1030-1047.   DOI
28 Hammond, S.M., Altshuller, Y.M., Sung, T.C., Rudge, S.A., Rose, K., Engebrecht, J., Morris, A.J., and Frohman, M.A. (1995). Human ADP-ribosylation factor-activated phosphatidylcholine-specific phospholipase D defines a new and highly conserved gene family. J. Biol. Chem. 270, 29640-29643.   DOI
29 Schonberger, T., Jurgens, T., Muller, J., Armbruster, N., Niermann, C., Gorressen, S., Sommer, J., Tian, H., di Paolo, G., Scheller, J., et al. (2014). Pivotal role of phospholipase D1 in tumor necrosis factoralpha-mediated inflammation and scar formation after myocardial ischemia and reperfusion in mice. Am. J. Pathol. 184, 2450-2464.   DOI
30 Dent, M.R., Singal, T., Dhalla, N.S., and Tappia, P.S. (2004). Expression of phospholipase D isozymes in scar and viable tissue in congestive heart failure due to myocardial infarction. J. Cell. Mol. Med. 8, 526-536.   DOI
31 DeVita, V.T., Jr., and Chu, E. (2008). A history of cancer chemotherapy. Cancer Res. 68, 8643-8653.   DOI
32 Dhingra, S., Rodriguez, M.E., Shen, Q., Duan, X., Stanton, M.L., Chen, L., Zhang, R., and Brown, R.E. (2010). Constitutive activation with overexpression of the mTORC2-phospholipase D1 pathway in uterine leiomyosarcoma and STUMP: morphoproteomic analysis with therapeutic implications. Int. J. Clin. Exp. Pathol. 4, 134-146.
33 Elvers, M., Stegner, D., Hagedorn, I., Kleinschnitz, C., Braun, A., Kuijpers, M.E., Boesl, M., Chen, Q., Heemskerk, J.W., Stoll, G., et al. (2010). Impaired alpha(IIb)beta(3) integrin activation and sheardependent thrombus formation in mice lacking phospholipase D1. Sci. Signal. 3, ra1.
34 Fabbrocini, G., Cameli, N., Romano, M.C., Mariano, M., Panariello, L., Bianca, D., and Monfrecola, G. (2012). Chemotherapy and skin reactions. J. Exp. Clin. Cancer Res. 31, 50.   DOI
35 Jang, J.H., Lee, C.S., Hwang, D., and Ryu, S.H. (2012). Understanding of the roles of phospholipase D and phosphatidic acid through their binding partners. Prog. Lipid Res. 51, 71-81.   DOI
36 Han, S., Huh, J., Kim, W., Jeong, S., Min do, S., and Jung, Y. (2014). Phospholipase D activates HIF-1-VEGF pathway via phosphatidic acid. Exp. Mol. Med. 46, e126.   DOI
37 Henkels, K.M., Boivin, G.P., Dudley, E.S., Berberich, S.J., and Gomez-Cambronero, J. (2013). Phospholipase D (PLD) drives cell invasion, tumor growth and metastasis in a human breast cancer xenograph model. Oncogene 32, 5551-5562.   DOI
38 Jang, Y.H., Ahn, B.H., Namkoong, S., Kim, Y.M., Jin, J.K., Kim, Y.S., and Min do, S. (2008). Differential regulation of apoptosis by caspase-mediated cleavage of phospholipase D isozymes. Cell. Signal. 20, 2198-2207.   DOI
39 Jin, J.K., Kim, N.H., Lee, Y.J., Kim, Y.S., Choi, E.K., Kozlowski, P.B., Park, M.H., Kim, H.S., and Min do, S. (2006). Phospholipase D1 is up-regulated in the mitochondrial fraction from the brains of Alzheimer's disease patients. Neurosci. Lett. 407, 263-267.   DOI
40 Joseph, T., Bryant, A., Frankel, P., Wooden, R., Kerkhoff, E., Rapp, U.R., and Foster, D.A. (2002). Phospholipase D overcomes cell cycle arrest induced by high-intensity Raf signaling. Oncogene 21, 3651-3658.   DOI
41 Kang, D.W., Choi, K.Y., and Min do, S. (2014). Functional regulation of phospholipase D expression in cancer and inflammation. J. Biol. Chem. 289, 22575-22582.   DOI
42 Stegner, D., Thielmann, I., Kraft, P., Frohman, M.A., Stoll, G., and Nieswandt, B. (2013). Pharmacological inhibition of phospholipase D protects mice from occlusive thrombus formation and ischemic stroke--brief report. Arterioscler. Thromb. Vasc. Biol. 33, 2212-2217.   DOI
43 Scott, S.A., Selvy, P.E., Buck, J.R., Cho, H.P., Criswell, T.L., Thomas, A.L., Armstrong, M.D., Arteaga, C.L., Lindsley, C.W., and Brown, H.A. (2009). Design of isoform-selective phospholipase D inhibitors that modulate cancer cell invasiveness. Nat. Chem. Biol. 5, 108-117.   DOI
44 Scott, S.A., O'Reilly, M.C., Daniels, J.S., Morrison, R., Ptak, R., Dawson, E.S., Tower, N., Engers, J.L., Engers, D.W., Oguin, T., et al. (2010). Development of a Selective, Allosteric PLD1/2 Inhibitor in a Novel Scaffold. In Probe Reports from the NIH Molecular Libraries Program (Bethesda (MD)).
45 Selvy, P.E., Lavieri, R.R., Lindsley, C.W., and Brown, H.A. (2011). Phospholipase D: enzymology, functionality, and chemical modulation. Chem. Rev. 111, 6064-6119.   DOI
46 Stringer, A.M., Gibson, R.J., Bowen, J.M., Logan, R.M., Yeoh, A.S., and Keefe, D.M. (2007). Chemotherapy-induced mucositis: the role of gastrointestinal microflora and mucins in the luminal environment. J. Support. Oncol. 5, 259-267.
47 Su, W., Chen, Q., and Frohman, M.A. (2009). Targeting phospholipase D with small-molecule inhibitors as a potential therapeutic approach for cancer metastasis. Future Oncol. 5, 1477-1486.   DOI
48 Lavieri, R.R., Scott, S.A., Selvy, P.E., Kim, K., Jadhav, S., Morrison, R.D., Daniels, J.S., Brown, H.A., and Lindsley, C.W. (2010). Design, synthesis, and biological evaluation of halogenated N-(2-(4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]decan-8-yl)ethyl)benzamides: discovery of an isoform-selective small molecule phospholipase D2 inhibitor. J. Med. Chem. 53, 6706-6719.   DOI
49 Kushi, L.H., Doyle, C., McCullough, M., Rock, C.L., Demark-Wahnefried, W., Bandera, E.V., Gapstur, S., Patel, A.V., Andrews, K., and Gansler, T. (2012). American Cancer Society Guidelines on nutrition and physical activity for cancer prevention: reducing the risk of cancer with healthy food choices and physical activity. CA Cancer J. Clin. 62, 30-67.   DOI
50 Lavieri, R., Scott, S.A., Lewis, J.A., Selvy, P.E., Armstrong, M.D., Alex Brown, H., and Lindsley, C.W. (2009). Design and synthesis of isoform-selective phospholipase D (PLD) inhibitors. Part II. Identification of the 1,3,8-triazaspiro[4,5]decan-4-one privileged structure that engenders PLD2 selectivity. Bioorganic Med. Chem. Lett. 19, 2240-2243.   DOI
51 Le Stunff, H., Peterson, C., Liu, H., Milstien, S., and Spiegel, S. (2002). Sphingosine-1-phosphate and lipid phosphohydrolases. Biochimica et biophysica acta 1582, 8-17.   DOI
52 Lee, C.S., Bae, Y.S., Lee, S.D., Suh, P.G., and Ryu, S.H. (2001). ATP-induced mitogenesis is modulated by phospholipase D2 through extracellular signal regulated protein kinase dephosphorylation in rat pheochromocytoma PC12 cells. Neurosci. Lett. 313, 117-120.   DOI
53 Lee, S.Y., Oh, J.Y., Lee, M.J., Jang, M.J., Park, H.Y., Kim, J.W., Min, D.S., Park, Y.M., Chang, Y.C., Bae, Y.S., et al. (2004). Anti-apoptotic mechanism and reduced expression of phospholipase D in spontaneous and Fas-stimulated apoptosis of human neutrophils. Eur. J. Immunol. 34, 2760-2770.   DOI
54 Walker, S.J., and Brown, H.A. (2004). Measurement of G protein-coupled receptor-stimulated phospholipase D activity in intact cells. Methods Mol. Biol. 237, 89-97.
55 Lee, C.S., Kim, K.L., Jang, J.H., Choi, Y.S., Suh, P.G., and Ryu, S.H. (2009). The roles of phospholipase D in EGFR signaling. Biochimi. Biophys. Acta 1791, 862-868.   DOI
56 Suh, P.G., Park, J.I., Manzoli, L., Cocco, L., Peak, J.C., Katan, M., Fukami, K., Kataoka, T., Yun, S., and Ryu, S.H. (2008). Multiple roles of phosphoinositide-specific phospholipase C isozymes. BMB Rep. 41, 415-434.   DOI
57 Sultani, M., Stringer, A.M., Bowen, J.M., and Gibson, R.J. (2012). Anti-inflammatory cytokines: important immunoregulatory factors contributing to chemotherapy-induced gastrointestinal mucositis. Chemother. Res. Pract. 2012, 490804.
58 Takuwa, Y., Okamoto, H., Takuwa, N., Gonda, K., Sugimoto, N., and Sakurada, S. (2001). Subtype-specific, differential activities of the EDG family receptors for sphingosine-1-phosphate, a novel lysophospholipid mediator. Mol. Cell. Endocrinol. 177, 3-11.   DOI
59 Toschi, A., Edelstein, J., Rockwell, P., Ohh, M., and Foster, D.A. (2008). HIF alpha expression in VHL-deficient renal cancer cells is dependent on phospholipase D. Oncogene 27, 2746-2753.   DOI
60 Wang, X., Devaiah, S.P., Zhang, W., and Welti, R. (2006). Signaling functions of phosphatidic acid. Prog. Lipid Res. 45, 250-278.   DOI
61 Weaver, B.A. (2014). How taxol/paclitaxel kills cancer cells. Mol. Biol. Cell 25, 2677-2681.   DOI
62 Weir, H.K., Anderson, R.N., Coleman King, S.M., Soman, A., Thompson, T.D., Hong, Y., Moller, B., and Leadbetter, S. (2016). Heart disease and cancer deaths - trends and projections in the United States, 1969-2020. Prev. Chronic Dis. 13, E157.
63 Bartel, D.P. (2009). MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233.   DOI
64 Alberghina, M. (2010). Phospholipase A(2): new lessons from endothelial cells. Microvasc. Res. 80, 280-285.   DOI
65 Wettergren, Y., Carlsson, G., Odin, E., and Gustavsson, B. (2012). Pretherapeutic uracil and dihydrouracil levels of colorectal cancer patients are associated with sex and toxic side effects during adjuvant 5-fluorouracil-based chemotherapy. Cancer 118, 2935-2943.   DOI
66 Ammar, M.R., Kassas, N., Chasserot-Golaz, S., Bader, M.F., and Vitale, N. (2013). Lipids in Regulated Exocytosis: What are They Doing? Front. Endocrinol. 4, 125.
67 Aoki, J. (2004). Mechanisms of lysophosphatidic acid production. Semin. Cell Dev. Biol. 15, 477-489.   DOI
68 Aoki, J., Inoue, A., Makide, K., Saiki, N., and Arai, H. (2007). Structure and function of extracellular phospholipase A1 belonging to the pancreatic lipase gene family. Biochimie 89, 197-204.   DOI
69 Baba, T., Kashiwagi, Y., Arimitsu, N., Kogure, T., Edo, A., Maruyama, T., Nakao, K., Nakanishi, H., Kinoshita, M., Frohman, M.A., et al. (2014). Phosphatidic acid (PA)-preferring phospholipase A1 regulates mitochondrial dynamics. J. Biol. Chem. 289, 11497-11511.   DOI
70 Bae, E.J., Lee, H.J., Jang, Y.H., Michael, S., Masliah, E., Min, D.S., and Lee, S.J. (2014). Phospholipase D1 regulates autophagic flux and clearance of alpha-synuclein aggregates. Cell Death Differ. 21, 1132-1141.   DOI
71 Billah, M.M., Eckel, S., Mullmann, T.J., Egan, R.W., and Siegel, M.I. (1989). Phosphatidylcholine hydrolysis by phospholipase D determines phosphatidate and diglyceride levels in chemotactic peptide-stimulated human neutrophils. Involvement of phosphatidate phosphohydrolase in signal transduction. J. Biol. Chem. 264, 17069-17077.
72 Liscovitch, M., Ben-Av, P., Danin, M., Faiman, G., Eldar, H., and Livneh, E. (1993). Phospholipase D-mediated hydrolysis of phosphatidylcholine: role in cell signalling. J. Lipid Mediat. 8, 177-182.
73 Lerchner, A., Mansfeld, J., Schaffner, I., Schops, R., Beer, H.K., and Ulbrich-Hofmann, R. (2005). Two highly homologous phospholipase D isoenzymes from Papaver somniferum L. with different transphosphatidylation potential. Biochim. Biophys. Acta 1737, 94-101.   DOI
74 Lewis, J.A., Scott, S.A., Lavieri, R., Buck, J.R., Selvy, P.E., Stoops, S.L., Armstrong, M.D., Brown, H.A., and Lindsley, C.W. (2009). Design and synthesis of isoform-selective phospholipase D (PLD) inhibitors. Part I: Impact of alternative halogenated privileged structures for PLD1 specificity. Bioorganic Med. Chem. Lett. 19, 1916-1920.   DOI
75 Lim, S.Y., Lee, S.C., Shin, I., and Han, J.S. (2002). Differential effects of Fas cross-linking on phospholipase D activation and related lipid metabolism in Fas-resistant A20 cells. Exp. Mol. Med. 34, 201-210.   DOI
76 Liu, M., Du, K., Fu, Z., Zhang, S., and Wu, X. (2015). Hypoxia-inducible factor 1-alpha up-regulates the expression of phospholipase D2 in colon cancer cells under hypoxic conditions. Med. Oncol. 32, 394.   DOI
77 Yamada, Y., Hamajima, N., Kato, T., Iwata, H., Yamamura, Y., Shinoda, M., Suyama, M., Mitsudomi, T., Tajima, K., Kusakabe, S., et al. (2003). Association of a polymorphism of the phospholipase D2 gene with the prevalence of colorectal cancer. J. Mol. Med. 81, 126-131.   DOI
78 Lopez, I., Arnold, R.S., and Lambeth, J.D. (1998). Cloning and initial characterization of a human phospholipase D2 (hPLD2). ADP-ribosylation factor regulates hPLD2. J. Biol. Chem. 273, 12846-12852.   DOI
79 MacDonald, V. (2009). Chemotherapy: managing side effects and safe handling. Can. Vet. J. 50, 665-668.
80 Mantovani, A. (2010). Molecular pathways linking inflammation and cancer. Curr. Mol. Med. 10, 369-373.   DOI
81 Yang, S.F., Freer, S., and Benson, A.A. (1967). Transphosphatidylation by phospholipase D. J. Biol. Chem. 242, 477-484.
82 Zhang, Y., and Frohman, M.A. (2014). Cellular and physiological roles for phospholipase D1 in cancer. J. Biol. Chem. 289, 22567-22574.   DOI
83 Zhao, Y., and Natarajan, V. (2009). Lysophosphatidic acid signaling in airway epithelium: role in airway inflammation and remodeling. Cell. Signal. 21, 367-377.   DOI
84 Zhao, C., Du, G., Skowronek, K., Frohman, M.A., and Bar-Sagi, D. (2007). Phospholipase D2-generated phosphatidic acid couples EGFR stimulation to Ras activation by Sos. Nat. Cell Biol. 9, 706-712.
85 Burkhardt, U., Stegner, D., Hattingen, E., Beyer, S., Nieswandt, B., and Klein, J. (2014). Impaired brain development and reduced cognitive function in phospholipase D-deficient mice. Neurosci. Lett. 572, 48-52.   DOI
86 Brown, H.A., Henage, L.G., Preininger, A.M., Xiang, Y., and Exton, J.H. (2007). Biochemical analysis of phospholipase D. Methods Enzymol. 434, 49-87.
87 Bruntz, R.C., Lindsley, C.W., and Brown, H.A. (2014a). Phospholipase D signaling pathways and phosphatidic acid as therapeutic targets in cancer. Pharmacol. Rev. 66, 1033-1079.   DOI
88 Bruntz, R.C., Taylor, H.E., Lindsley, C.W., and Brown, H.A. (2014b). Phospholipase D2 mediates survival signaling through direct regulation of Akt in glioblastoma cells. J. Biol. Chem. 289, 600-616.   DOI
89 Chabner, B.A., and Roberts, T.G., Jr. (2005). Timeline: Chemotherapy and the war on cancer. Nat. Rev. Cancer 5, 65-72.   DOI
90 Chen, Y., Jungsuwadee, P., Vore, M., Butterfield, D.A., and St Clair, D.K. (2007). Collateral damage in cancer chemotherapy: oxidative stress in nontargeted tissues. Mol. Inter. 7, 147-156.   DOI
91 Chen, Q., Hongu, T., Sato, T., Zhang, Y., Ali, W., Cavallo, J.A., van der Velden, A., Tian, H., Di Paolo, G., Nieswandt, B., et al. (2012). Key roles for the lipid signaling enzyme phospholipase d1 in the tumor microenvironment during tumor angiogenesis and metastasis. Sci. Signal. 5, ra79.
92 Nakashima, S., Matsuda, Y., Akao, Y., Yoshimura, S., Sakai, H., Hayakawa, K., Andoh, M., and Nozawa, Y. (1997). Molecular cloning and chromosome mapping of rat phospholipase D genes, Pld1a, Pld1b and Pld2. Cytogenetics Cell Genet. 79, 109-113.   DOI
93 Min, D.S., Kwon, T.K., Park, W.S., Chang, J.S., Park, S.K., Ahn, B.H., Ryoo, Z.Y., Lee, Y.H., Lee, Y.S., Rhie, D.J., et al. (2001). Neoplastic transformation and tumorigenesis associated with overexpression of phospholipase D isozymes in cultured murine fibroblasts. Carcinogenesis 22, 1641-1647.   DOI
94 Monovich, L., Mugrage, B., Quadros, E., Toscano, K., Tommasi, R., LaVoie, S., Liu, E., Du, Z., LaSala, D., Boyar, W., et al. (2007). Optimization of halopemide for phospholipase D2 inhibition. Bioorganic. Med. Chem. Lett. 17, 2310-2311.   DOI
95 Murakami, M., Taketomi, Y., Miki, Y., Sato, H., Hirabayashi, T., and Yamamoto, K. (2011). Recent progress in phospholipase A(2) research: from cells to animals to humans. Prog. Lipid Res. 50, 152-192.   DOI
96 Nishikimi, A., Fukuhara, H., Su, W., Hongu, T., Takasuga, S., Mihara, H., Cao, Q., Sanematsu, F., Kanai, M., Hasegawa, H., et al. (2009). Sequential regulation of DOCK2 dynamics by two phospholipids during neutrophil chemotaxis. Science 324, 384-387.   DOI
97 Chen, Z., Li, D., Cheng, Q., Ma, Z., Jiang, B., Peng, R., Chen, R., Cao, Y., and Wan, X. (2014). MicroRNA-203 inhibits the proliferation and invasion of U251 glioblastoma cells by directly targeting PLD2. Mol. Med. Rep. 9, 503-508.   DOI
98 Cho, C.H., Lee, C.S., Chang, M., Jang, I.H., Kim, S.J., Hwang, I., Ryu, S.H., Lee, C.O., and Koh, G.Y. (2004). Localization of VEGFR-2 and PLD2 in endothelial caveolae is involved in VEGF-induced phosphorylation of MEK and ERK. American journal of physiology. Heart Circ. Physiol. 286, H1881-1888.   DOI
99 Nanjundan, M., and Possmayer, F. (2003). Pulmonary phosphatidic acid phosphatase and lipid phosphate phosphohydrolase. American journal of physiology. Lung Cell. Mol. Physiol. 284, L1-23.   DOI
100 Nelson, R.K., and Frohman, M.A. (2015). Physiological and pathophysiological roles for phospholipase D. J. Lipid Res. 56, 2229-2237.   DOI
101 Osisami, M., Ali, W., and Frohman, M.A. (2012). A role for phospholipase D3 in myotube formation. PloS one 7, e33341.   DOI
102 Oude Weernink, P.A., Lopez de Jesus, M., and Schmidt, M. (2007). Phospholipase D signaling: orchestration by PIP2 and small GTPases. Naunyn-Schmiedeberg's Arch. Pharmacol. 374, 399-411.   DOI