• Title/Summary/Keyword: anti-sway control

Search Result 86, Processing Time 0.021 seconds

Modeling and Anti-sway Control of a Harbor Container Crane (항만 컨테이너 크레인의 모델링과 흔들림 억제 제어 방법)

  • Lim, Chang-Jin;Choi, Chang-Ho;Moon, Sang-Ho;Yang, Byung-Hoon;Kim, Heung-Geun;Choi, Jong-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1465-1467
    • /
    • 2005
  • In this paper, the harbor container crane which transports containers between a container ship and trucks in the harbor is modeled. The equation of motion is simplified for control purpose. The pole placement technique is used to control the crane to minimize load swing angle The objective of the control is to transfer the load as quickly as possible, while minimizing the amplitude of swing at the end of transfer. Computer simulations are provided.

  • PDF

Nonlinear Wave Transformation and Dynamic Behaviors of Semi-Submerged Air-Chamber Floating Breakwater (반잠수압기형부방파제의 비선형파랑변형 및 동적거동에 관한 연구)

  • Kim, D.S.
    • Journal of Korean Port Research
    • /
    • v.10 no.1
    • /
    • pp.25-36
    • /
    • 1996
  • Generally, it is pointed out that a nonlinear analysis is needed to estimate accurately the water surface fluctuation and dynamic responses of a floating structure in case of large wave reflection. In this study, a frequency-domain method is applied and newly developed to analyze the nonlinear characteristics of the air-chamber floating breakwater. The air-chamber floating breakwater in this study can control well the wave transformation, motions of the structure and its natural frequency by adjusting the air depth in the chamber. Experiments are carried out to verify the numerical results. It is appeared that the mean water level is setup in the anti-node and setdown in the node, while the nonlinearity in wave profile is larger in the node than in the anti-node. Because of vertical mooring system, the sway, especially the time-independent nonlinear component, plays predominant role in the motion. On the other hand, the time-dependent component, as well as the time-independent one to the tensile force of mooring line contributes greatly, and the time averaged value presents tensional force oriented to the onshore side due drift force.

  • PDF

Swing Motion Control System Design Based on Frequency-shaped LQ Control (주파수 의존형 최적 레귤이터에 의한 크레인 흔들림 제어계 설계)

  • Kim, Y.B.;Jang, J.S.
    • Journal of Power System Engineering
    • /
    • v.12 no.6
    • /
    • pp.50-55
    • /
    • 2008
  • In general, the swing motion of the crane is controlled and suppressed by activating the trolley motion. In many papers reported by us, we suggested a new type of anti-sway control system of the crane. In the proposed control system, a small auxiliary mass(moving-mass) is installed on the spreader and the swing motion is controlled by moving the auxiliary mass. The actuator reaction against the auxiliary mass applies inertial control forces to the container in order to reduce the swing motion in the desired manner. Futhermore the measuring systems based on image sensor have been proposed also. To obtain the robustness for our control system, $H_{\infty}$ based control techniques and other approach have been applied to suppress swing motion. As well known, the robust control technologies based on $H_{\infty}$ control need complicated and difficult process. In the result, the obtained closed-loop system becomes to high order system which may give us many difficulties to apply it to the real plants. Therefore, we introduce an easy approach which is based on LQ control theory. In this approach, we introduce the frequency dependent weighting matrices which give the system filters to shape frequency characteristics of the controlled system and guarantee the control performance.

  • PDF

A Study on Stabilization of Container Cranes Using an Optimal Modulation Controller (최적 변조제어기를 이용한 컨테이너 크레인의 안정화에 관한연구)

  • 허동렬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.630-636
    • /
    • 1999
  • In this paper in optimal modulation controller for position control and anti-sway of container crane systems is designed by a recursive algorithm that determines the state weighting matrix Q of a linear quadratic performance. The optimal modulation controller is based on optimal control. The basic feature of the recursive algorithm is the reduction of the number of iterations as well as minimization of the calculations involved So in order to obtain a mathematical model which rep-resents the equation of motion of the trolley and load Lagrange equation is used. The optimal modulation controller has been verified and simulated to show that it is robust when a load dis-turbance is applied and a reference is changed.

  • PDF

A Study on the Tracking Control of a Transfer Crane with Tire Slip (슬립을 고려한 트랜스퍼 크레인의 주행제어에 관한 연구)

  • Jeong, Ji-Hyun;Lee, Dong-Seok;Kim, Young-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1212-1219
    • /
    • 2010
  • The most important thing in the container terminal is to handle the cargo effectively in the limited time. To achieve this object, many strategies have been introduced and applied to. If we consider the technical trends and environment of the automated container terminal, it is necessary that the systems for cargo handling are equipped with more intelligent control technologies. To cope with this tendency, from the middle of the 1990's, the automated RMGC (Rail-Mounted Gantry Crane) and RTGC (Rubber-Tired Gantry Crane) have been developed and widely used to handle containers in the yards. Recently, in these cranes, the many equipments like CCD cameras and sensors are mounted to cope with the automated terminal environment. If we want to obtain more efficient handling performance, the modelling, tracking control, anti-sway system design, skew motion suppressing and complicated motion control problems must be considered in the control system design and application process. Considering these problems, in this paper, the system modelling with the tire slip and a tracking control approach are proposed. Especially, we design the tracking control system based on the 2DOF servosystem design approach to cope with undesirable disturbance input. The experiment results show the desirable performance and usefulness of the designed control system.

A Study on the Tracking Control of a Transfer Crane : Observer Design and Experimental Study (트랜스퍼 크레인의 주행제어에 관한 연구 : 관측기 설계 및 실험적 연구)

  • Choe, Mun-Seok;Suh, Jin-Ho;Lee, Kwon-Soon;Kim, Young-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.1
    • /
    • pp.26-32
    • /
    • 2007
  • The most important thing in the container terminal is to handle the cargo effectively in the limited time. To achieve this object, many strategies have been introduced and applied to. If we consider the automated container terminal, it is necessary that the cargo handling equipments are equipped with more intelligent control systems. From the middle of the 1990's, an automated rail-mounted gantry crane(RMGC) and rubber-tired gantry crane(RTG) have been developed and widely used to handle containers in the yards. Recently, in these cranes, the many equipments like CCD cameras and sensors are mounted to cope with the automated terminal environment. In this paper, we try to support the development of more intelligent automated cranes which make the cargo handling be performed effectively in the yards. For this plant, the modelling, tracking control, anti-sway system design, skew motion suppressing and complicated motion control and suppressing problems must be considered. In this paper, the system modelling and a tracking control approach are discussed. And, we design the tracking control system incorporating an observer based on the 2DOF servosystem design approach to obtain the informations of the states. The experiment results show the usefulness of the designed control system.

Modelling and Accurate Tracking Controller Design of A Transfer Crane (트랜스퍼 크레인의 모델링 및 고정도 주행제어기 설계에 관한 연구)

  • Kim, Young-Bok;Suh, Jin-Ho;Lee, Kwon-Soon
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.6 s.73
    • /
    • pp.114-122
    • /
    • 2006
  • The most important thing in the container terminal is to handle the cargo effectively in a limited time. To achieve this objective, many strategies have been introduced and applied. If we consider the automated container terminal, it is necessary that the cargo handling equipment is equipped with more intelligent control systems. From the middle of the 1990s, an automated rail-mounted gantry crane (RMGC) and rubber-tired gantry crane (RTG) have been developed and widely used to handle containers in the yards. Recently, in these cranes, equipment like CCD cameras and sensors have been mounted to cope with the automated terminal environment. In this paper, we try to support the development of more intelligent automated cranes that make the cargo handling be performed effectively in the yards. For this plant, we ought to consider modeling, tracking control, anti-sway system design, skew motion suppressionand complicated motion control and suppressing problems. In this paper, the system modeling and a tracking control approach are discussed, based on a two-degree-of-freedom (2DOF) servo-system design. From the simulation results, the good control performance of the designed control system is evaluated.

Measurement and Control of Swing Motion Using Image Sensor (이미지 센서를 이용한 크레인의 흔들림 계측 및 제어)

  • Kim, Y.B.;Kawai, H.;Choi, Y.W.;Lee, K.S.;Chae, G.H.
    • Journal of Power System Engineering
    • /
    • v.11 no.4
    • /
    • pp.103-108
    • /
    • 2007
  • In general, the swing motion of the crane is controlled and suppressed by activating the trolley motion. In many papers reported by us, we suggested a new type of anti-sway control system of the crane. In the proposed control system, a small auxiliary mass(moving-mass) is installed on the spreader and the swing motion is controlled by moving the auxiliary mass. The actuator reaction against the auxiliary mass applies inertial control forces to the container in order to reduce the swing motion in the desired manner. The measuring system is based on laser sensor or others. However it is not so useful in real world. Especially, in this paper, the image sensor is used to measures the motions of the spreader and the measured data are fed back to the controller in real time. The applied image processing technique is a kind of robust template matching method which is named Vector Code Correlation (VCC) and devised to consider the real environmental conditions. And the $H_{\infty}$ based control technique is applied to suppress swing motion of the crane. And the experimental result shows that the proposed measurement system based on image sensor and control system is useful and robust to disturbances.

  • PDF

A Study On the Position Control System of the Small ROV Using Sonar Sensors (소나 센서를 이용한 소형 ROV의 위치제어시스템에 관한 연구)

  • Choi, Dong-Hyun;Um, Geun-Nam;Kim, Sang-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.579-589
    • /
    • 2008
  • In the past few years, there are many studies and researches of the underwater vehicles which are carried out its mission using sonar sensors. MSCL(Marine System Control Lab.) at Inha University developed test-bed small ROV, ISRO. ISRO is an open-frame type and has 4 thrusters. ISRO can control 4 motions i.e surge, sway, yaw and heave with sonar sensors. ISRO is developed for inspection of ship hull, marine structure, plant of lake or river and so on. When ROV ISRO inspects something, it is necessary to control the position of ROV ISRO's for the movement and anti-collision with structures in the underwater. In this paper, we deal with the development of a small ROV and verification of the position control system via simulation and experiment using sonar sensors.

An Experimental Study on the Accurate Tracking Control of a Transfer Crane Based on the 2DOF Servosystem Design Approach (트랜스퍼 크레인의 고정도 주행제어에 관한 연구 : 2자유도 서보계 설계법을 이용한 제어계 설계 및 실험적 연구)

  • Kim, Young-Bok;Lee, Kwon-Soon;Han, Seong-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.5 s.72
    • /
    • pp.57-62
    • /
    • 2006
  • The most important thing in acontainer terminal is to handle the cargo effectively in the limited time available. To achieve this objective, many strategies have been introduced and applied. To create an automated container terminal, it is necessary for the cargo handling equipment to be equipped with more intelligent control systems. From the middle of the 1990's, automated rail-mounted gantry cranes (RMGC) and rubber-tired gantry cranes (RTG) have been widely used to handle containers in yards. Recently, many pieces of equipment, like CCD cameras and sensors, have beenmounted in these cranes to cope with the automated terminal environment. In this paper, we try to support the development of more intelligent automated cranes, which allow for more effective cargo handling in yards. For this purpose, the modeling, tracking control, anti-sway system design, skew motion suppressing, and complicated motion control and suppressing problems must be considered. Especially, in this paper, the system modeling and a new tracking control approach are discussed, and an experimental study is performed based on a two-degree-of-freedom (2DOF) servosystem design.