• 제목/요약/키워드: anti-oxidative and anti-inflammatory effects

검색결과 462건 처리시간 0.027초

The hepatoprotective effects of silkworm: Insights into molecular mechanisms and implications

  • Young-Min Han;Da-Young Lee;Moon-Young Song;Seung-Won Lee;Eun-Hee Kim
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제46권2호
    • /
    • pp.25-33
    • /
    • 2023
  • The liver, a multifunctional organ, plays a vital role in maintaining overall health and well-being by regulating metabolism, detoxification, nutrient storage, hormone balance, and immune function. Liver diseases, such as hepatitis, cirrhosis, fatty liver disease, and liver cancer, have significant clinical implications and remain a global health concern. This article reviews the therapeutic potential of silkworm larvae (Bombyx mori) and explores their underlying molecular mechanisms in protecting against liver diseases. Silkworm larvae are rich in proteins, vitamins, minerals, and n-3 fatty acids, making them a promising candidate for therapeutic applications. The anti-inflammatory mechanisms of silkworm larvae involve modulating the production of cytokine such as TNF-α and interleukins, inflammatory enzymes including cyclooxygenase-2 and macrophage polarization, thereby attenuating liver inflammation. Silkworm larvae also exhibit anti-oxidative effects by scavenging free radicals, reducing intracellular reactive oxygen species and enhancing the liver's antioxidant defense system. Moreover, silkworms have been reported to decrease the serum alcohol concentration and lipid accumulation. Understanding the therapeutic properties of silkworm larvae contributes to the development of innovative strategies for liver injury prevention and treatment. Further research is warranted to elucidate the precise signaling pathways involved in the anti-inflammatory and anti-oxidative effects of silkworm larvae, paving the way for potential therapeutic interventions in liver diseases.

Sonchus asper extract inhibits LPS-induced oxidative stress and pro-inflammatory cytokine production in RAW264.7 macrophages

  • Wang, Lan;Xu, Ming Lu;Liu, Jie;Wang, You;Hu, Jian He;Wang, Myeong-Hyeon
    • Nutrition Research and Practice
    • /
    • 제9권6호
    • /
    • pp.579-585
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Sonchus asper is used extensively as an herbal anti-inflammatory for treatment of bronchitis, asthma, wounds, burns, and cough; however, further investigation is needed in order to understand the underlying mechanism. To determine its mechanism of action, we examined the effects of an ethyl acetate fraction (EAF) of S. asper on nitric oxide (NO) production and prostaglandin-E2 levels in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. MATERIALS/METHODS: An in vitro culture of RAW264.7 macrophages was treated with LPS to induce inflammation. RESULTS: Treatment with EAF resulted in significant suppression of oxidative stress in RAW264.7 macrophages as demonstrated by increased endogenous superoxide dismutase (SOD) activity and intracellular glutathione levels, decreased generation of reactive oxygen species and lipid peroxidation, and restoration of the mitochondrial membrane potential. To confirm its anti-inflammatory effects, analysis of expression of inducible NO synthase, cyclooxygenase-2, tumor necrosis factor-${\alpha}$, and the anti-inflammatory cytokines IL-$1{\beta}$ and IL-6 was performed using semi-quantitative RT-PCR. EAF treatment resulted in significantly reduced dose-dependent expression of all of these factors, and enhanced expression of the antioxidants MnSOD and heme oxygenase-1. In addition, HPLC fingerprint results suggest that rutin, caffeic acid, and quercetin may be the active ingredients in EAF. CONCLUSIONS: Taken together, findings of this study imply that the anti-inflammatory effect of EAF on LPS-stimulated RAW264.7 cells is mediated by suppression of oxidative stress.

세신(細辛) 주정(酒錠) 추출물(抽出物)이 LPS로 유발된 RAW 264.7 Cell의 염증 및 항산화 반응에 미치는 영향 (Anti-oxidation and Anti-inflammatory Effect of Asiasari Radix in RAW 264.7 Cells)

  • 이옥진;오민석
    • 한방재활의학과학회지
    • /
    • 제24권3호
    • /
    • pp.99-110
    • /
    • 2014
  • Objectives The purpose of this study was to investigate the Anti-oxidation and anti-inflammatory effects of ethanol extract from asiasari radix (AR) on lipopolysaccharide (LPS)-induced in RAW 264.7 Cells Methods Anti-oxidative effects of AR were measured by scavenging activities of 1,1-diphenyl-2-picryl-hydrazyl (DPPH), 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and production of reactive oxygen species (ROS) in RAW 264.7 cells. Anti-inflammatory effects of AR were measured by mediators including nitric oxide(NO), interleukin-$1{\beta}$ (IL-$1{\beta}$), interleukin-6 (IL-6), tumor necosis factors-${\alpha}$ (TNF-${\alpha}$) and iNOS, IL-$1{\beta}$, IL-6, TNF-${\alpha}$ mRNA expression in RAW 264.7 cells. Results Total phenolic content was expressed $28.77{\pm}1.67$. DPPH radical Scavenging was increased depend on AR ethanol extract. ABAT radical Scavenging was increased depend on AR ethanol extract. Production of ROS was significantly decreased by AR ethanol extract on concentration of 100 (${\mu}g/ml$). Production of NO was significantly decreased by AR ethanol extract on concentration of $100({\mu}g/ml)$. Production of IL-$1{\beta}$, interleukin-6 and TNF-${\alpha}$ were increased depend on AR ethanol extract. And Production of interleukin-6, TNF-${\alpha}$ were significantly decreased AR ethanol extract. iNOS, IL-$1{\beta}$, IL-6, TNF-${\alpha}$ mRNA expression of RAW 264.7 cells was increased depend on AR ethanol extract. Conclusions According to this study, AR ethanol extract has anti-oxidative and anti-inflammatoy effects.

Anti-Oxidative and Anti-Inflammatory Effects of QGC in Cultured Feline Esophageal Epithelial Cells

  • Lee, Myeong Jae;Song, Hyun Ju;Jeong, Jun Yeong;Park, Sun Young;Sohn, Uy Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권1호
    • /
    • pp.81-87
    • /
    • 2013
  • Quercetin-3-O-${\beta}$-D-glucuronopyranoside (QGC) is a flavonoid glucoside extracted from Rumex Aquaticus Herba. In the present study, anti-oxidative and anti-inflammatory effects of QGC were tested in vitro. Epithelial cells obtained from cat esophagus were cultured. When the cells were exposed to acid for 2 h, cell viability was decreased to 36%. Pretreatment with 50 ${\mu}M$ QGC for 2 h prevented the reduction in cell viability. QGC also inhibited the productions of intracellular ROS by inflammatory inducers such as acid, lipopolysaccharide, indomethacin and ethanol. QGC significantly increased the activities of superoxide dismutase (SOD) and catalase, and also induced the expression of SOD2, while it restored the decrease of catalase expression in cells exposed to acid. QGC inhibited NF-${\kappa}B$ translocation, cyclooxygenase-2 expression and $PGE_2$ secretion in cells exposed to acid, which plays an important role in the pathogenesis of esophagitis. The data suggest that QGC may well be one of the promising substances to attenuate oxidative epithelial cell injury and inflammatory signaling in esophagus inflammation.

Anti-oxidant and Anti-inflammatory Effects of Rutin and Its Metabolites

  • Kim, Ji Hye;Park, Sang Hee;Beak, Eun Ji;Han, Chang Hee;Kang, Nam Joo
    • Current Research on Agriculture and Life Sciences
    • /
    • 제31권3호
    • /
    • pp.165-169
    • /
    • 2013
  • Rutin is one of the major flavonoids found in buckwheat (Fagopyrum esculentum Moench). While rutin is already known to exhibit anti-oxidative, anti-inflammatory, and anti-carcinogenic activities. However, the health beneficial function of rutin metabolites is not well understood. In DPPH radical scavenging assays, the present study found that 3,4-dihydroxyphenyl acetic acid had the highest total anti-oxidant activity, followed by 3,4-dihydroxyphenylacetic acid, rutin, homovanillic acid, and 3-hydroxyphenyl acetic acid. Further, 3,4-dihydroxyphenylacetic acid strongly reduced LPS-induced IL-6 production in RAW 264.7 cells, compared with other metabolites. Therefore, these results suggest that rutin metabolites have potential to be utilized as food ingredients with anti-oxidant and anti-inflammatory activities.

  • PDF

丹蔘 추출물의 항산화 효과에 의한 RAW264.7 cell에서의 항염증 작용 (Anti-inflammatory effects of Salviae Miltiorrhizae Radix extract on RAW264.7 cell. via anti-oxidative activities)

  • 이세은;조수인
    • 대한본초학회지
    • /
    • 제30권4호
    • /
    • pp.89-94
    • /
    • 2015
  • Objectives : It had been reported that herbal medicines containing polyphenol and flavonoid have been shown to be associated with decreased the cause of aging and variety of disease such as reactive nitrogen species and reactive oxygen species in several recent studies. Salviae miltiorrhizae Radix, origined fromSalvia miltiorrhizaBGE., is one of popular traditional herbal medicines that is commonly used by traditional medicine practitioners. To this date, Salviae miltiorrhizae Radix has more than 2000-year history of mature application. This study was conducted to investigate whether the Salviae miltiorrhizae Radix methanol extract has an inhibitory effect association with oxidation or inflammation.Methods : Cytotoxic activity of Salviae miltiorrhizae Radix methanol extract on RAW264.7 cells was evaluated by using 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide solution. Nitric oxide production was measured using griess reagent system. Western blot analysis and measurement for changes of protein expression, nitric oxide synthase and cyclooxygenase-2, also performed.Results : The medicinal plant, Salviae miltiorrhizae Radix, does not impair the cell viability in tested concentration (25-100 μg/ml). SMR showed anti-oxiative effectsin vitroby decreasing electron donating ability, and also showed anti-inflammatory effects suppressing NO and COX-2 expressin in LPS induced RAW264.7 activation. SMR inhibited the generation of intracellular ROS production as dose dependant manner.Conclusions : These results indicate that Salviae miltiorrhizae Radix methanol extract has an anti-inflammatory activities via anti-oxidative effects, and the anti-inflammatory effect was presentedd as dose dependant manner.

Anti-Oxidant, Pro-Oxidant and Anti-Inflammatory Effects of Unpolished Rice Relevant to Colorectal Cancer

  • Suwannalert, Prasit;Payuhakrit, Witchuda;Koomsang, Thidarat
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권12호
    • /
    • pp.5047-5056
    • /
    • 2016
  • Colorectal cancer (CRC) is a major worldwide health problem owing to its high prevalence and mortality rates. Carcinogenesis in the colon is a multistage and multifactorial process. An imbalance between free radical exposure and anti-oxidant defense systems may leads to oxidative stress and attack of macromolecules which can alter signal transduction pathways and gene expression. Consequently, oxidative damage can lead to cellular dysfunction and contribute to pathophysiological processes in a variety of diseases including CRC. One factor tightly associated with CRC is chronic inflammation, which can be present from the earliest stage of tumor onset. Unpolished rice is an attractive chemoprevention in CRC due to their anti-oxidant and anti-inflammatory activities. The aim of this paper is to review evidence linking oxidative stress and inflammation to CRC and to provide essential background information for understanding future research on oxidative stress and inflammation on CRC. Mechanisms of action of unpolished rice in CRC carcinogenesis are also discussed.

청조구폐탕(淸燥救肺湯)의 Nrf2 매개 항산화 효능 (Cheogjogupye-Tang has Anti-oxidant Potential through the Activation of Nrf2)

  • 이광규;이학인;정한솔
    • 동의생리병리학회지
    • /
    • 제29권2호
    • /
    • pp.174-179
    • /
    • 2015
  • Transcription factor, Nrf2 was well known to protect cell from oxidative stress by up-regulating it's dependent anti-oxidative genes such as HO-1 and NQO1. Cheongjogupye-tang (CJGPT), a traditional herbal formula was originally recorded in 『EuiMunBeopRyul』, still having been used to treat pulmonary disease such as asthma and pulmonary inflammation, in Eastern Asian countries. However, the underlying therapeutic mechanisms remain elusive. The purpose of this study is to investigate the anti-inflammatory or anti-oxidative effects of CJGPT on the RAW 264.7 cells. To examine the anti-inflammatory or anti-oxidative effects of CJGPT, MTT assay, immunoblotting, RT-PCR and reporter gene assays were performed. Although CJGPT slightly suppressed the nuclear NF-κB expression, it did not decreased the expression of pro-inflammatory genes in LPS-stimulated RAW 264.7 cells. Moreover, it did not increased the transcriptional activity of NF-κB in reporter gene assay. However, CJGPT upregulated the nuclear expression of Nrf2, as well as increased the expression of Nrf2-dependent genes such as HO-1 and NQO1. In addition, CJGPT incresed the transcriptional activity of Nrf2. Taken together, our results showed that CJGPT exerts functions as an anti-oxidant mainly by activating Nrf2.

가미생맥산(加味生脈散) 및 개별약재의 항산화 및 항염증 효능에 대한 비교 연구 (Anti-Oxidative and Anti-inflammatory Effect of Combined Extract and Individual Extract of GamiSaengmaeksan)

  • 지중구
    • 대한본초학회지
    • /
    • 제31권1호
    • /
    • pp.69-75
    • /
    • 2016
  • Objectives : The aim of this study is to investigate the various effects of individual or combined extract of GamiSaengmaeksan (GSS) on cell viability, anti-inflammatory and antioxidant activityMethods : In order to evaluate cytotoxicity, MTT assay was performed. We investigated the levels of proinflammatory cytokines such as tumor necrosis factor (TNF)-α and interleukin (IL)-6 and interleukin (IL)-1β, and nitric oxide(NO) in LPS-induced RAW 264.7 cells to check the effects on anti-inflammatory activity. The level of NO production in RAW 264.7 cells was measured by using Griess reagent. The levels of cytokines and ROS were measured by Luminex and Flow cytometry, respectively.Results : At concentration of 200 ㎍/㎖ GSS, cytotoxicity was observed in RAW 264.7 cells. However, at concentration less than 100 ㎍/㎖ of both combine and individual GSS, cytotoxicity was not observed in Raw 264.7 cells. However, the level of ROS in RAW 264.7 cells were decreased at both extract of 100 ㎍/㎖ GSS. Also, the level of NO in RAW 264.7 cells were decreased from extraction of concentration of 100 ug/ml in GSS and individual-extraction of Liriopis Tuber, White Ginseng and Glycyrrhizae Radix. In addition, productions of pro-inflammatory cytokines (TNF-α) in LPS-induced RAW 264.7 cells were decreased from extraction of concentration of 10 and 100 (㎍/㎖) in GSS and individual-extraction of Liriopis Tuber.Conclusions : It is concluded that combined extract of GSS appears to be more effective in anti-oxidation and anti-inflammatory effect than those in individual-extraction of GSS. These results may be developed as a raw material for new therapeutics to ease the symptoms related with inflammatory and oxidative stress.

Anti-inflammatory and Anticancer Activities of Ethanol Extract of Pendulous Monkshood Root in vitro

  • Huang, Xian-Ju;Ren, Wei;Li, Jun;Chen, Lv-Yi;Mei, Zhi-Nan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권6호
    • /
    • pp.3569-3573
    • /
    • 2013
  • Aim: Pendulous monkshood root is traditionally used for the treatment of several inflammatory pathologies such as rheumatisms, wounds, pain and tumors in China. In this study, the anti-inflammatory and anticancer activities and the mechanism of crude ethanol extract of pendulous monkshood root (EPMR) were evaluated and investigated in vitro. Materials and Methods: The cytotoxic effects of EPMR on different tumor cell lines were determined by the MTT method. Cell apoptosis and cell nucleus morphology were assessed by Hoechst 33258 staining. Moreover, nitric oxide (NO) levels and intracellular oxidative stress in peritoneal macrophages were determined to further elucidate mechanisms of action. Results: The data showed that EPMR could produce significant dose-dependent toxicity on three kinds of tumor cells. Furthermore, EPMR displayed obvious anti-inflammatory effects on LPS-induced mouse peritoneal macrophages at the dosage of 4 - 200 ${\mu}g/mL$. The results demonstrated the therapeutic potential of Pendulous Monkshood Root on cancer and inflammatory diseases. Conclusion: Our results indicate that EPMR has anti-inflammatory and anticancer properties, suggesting that pendulous monkshood root may be a useful anti-tumor and anti-inflammatory reagent in the clinic.