• Title/Summary/Keyword: anti-inflammatory effects$NF-{\kappa}B$

Search Result 522, Processing Time 0.027 seconds

Anti-Inflammatory Effects of Ethyl Acetate Fraction from Cnidium officinale Makino on LPS-Stimulated RAW 264.7 and THP-1 Cells

  • Jeong, Jin-Boo;Hong, Se-Chul;Jeong, Hyung-Jin;Koo, Jin-Suk
    • Korean Journal of Plant Resources
    • /
    • v.25 no.3
    • /
    • pp.299-307
    • /
    • 2012
  • This work aimed to elucidate the anti-inflammatory effects of ethyl acetate fraction from Cnidium officinale Makino with a cellular system of LPS-stimulated RAW 264.7 and THP-1 cells. Some key pro-inflammatory cytokines and mediators including NO, iNOS, $PGE_2$, COX-2, TNF-${\alpha}$, NF-${\kappa}B$ p50 and NF-${\kappa}B$ p65 were studied by sandwich ELISA and western blot analysis. Ethyl acetate fraction could significantly inhibit the production of NO, $PGE_2$, TNF-${\alpha}$, iNOS and COX-2 in LPS-stimulated cell than that of single LPS-stimulated. And ethyl acetate fraction suppresses the activation of NF-${\kappa}B$ p50 and NF-${\kappa}B$ p65. All the results showed that ethyl acetate fraction had a good anti-inflammatory effect on LPS-stimulated RAW264.7 and THP-1 cells. Taken together, the anti-inflammatory actions of ethyl acetate fraction from Cnidium officinale Makino might be due to the down-regulation of NO, $PGE_2$, TNF-${\alpha}$, iNOS and COX-2 via the suppression of NF-${\kappa}B$ activation.

Licochalcone B Exhibits Anti-inflammatory Effects via Modulation of NF-κB and AP-1

  • Kim, Jin-Kyung;Jun, Jong-Gab
    • Biomedical Science Letters
    • /
    • v.21 no.4
    • /
    • pp.218-226
    • /
    • 2015
  • The present study investigated the mechanisms of licochalcone B (LicB)-mediated inhibition of the inflammatory response in murine macrophages. RAW264.7 murine macrophages were cultured in the absence or presence of lipopolysacharide (LPS) with LicB. LicB suppressed the generation of nitric oxide and the pro-inflammatory cytokines interleukin (IL)-$1{\beta}$, IL-6 and tumor necrosis factor-${\alpha}$. LicB also inhibited the expression of mRNA for inducible nitric oxide synthase and pro-inflammatory cytokines induced by LPS. Moreover, LicB inhibited nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and activator protein-1 translocation into the nucleus in a dose-dependent manner. Thus, LicB mainly exerts its anti-inflammatory effects by inhibiting the LPS-induced NF-${\kappa}B$ and activator protein-1 signaling pathways in macrophages, which subsequently diminishes the expression and release of various inflammatory mediators. LicB shows promise as a therapeutic agent in inflammatory diseases.

Globular Adiponectin Exerts a Pro-Inflammatory Effect via IκB/NF-κB Pathway Activation and Anti-Inflammatory Effect by IRAK-1 Downregulation

  • Lee, Kyoung-Hee;Jeong, Jiyeong;Woo, Jisu;Lee, Chang-Hoon;Yoo, Chul-Gyu
    • Molecules and Cells
    • /
    • v.41 no.8
    • /
    • pp.762-770
    • /
    • 2018
  • Adiponectin, a hormone produced by adipose tissue, is very abundant in plasma, and its anti- and pro-inflammatory effects are reported. However, the mechanisms of these pro- and anti-inflammatory effects are not fully defined. Herein, we evaluated the dual inflammatory response mechanism of adiponectin in macrophages. Short-term globular adiponectin (gAd) treatment induced $I{\kappa}B{\alpha}$ degradation, $NF-{\kappa}B$ nuclear translocation, and $TNF-{\alpha}$ production in RAW 264.7 cells. Polymyxin B pretreatment did not block gAd-induced $I{\kappa}B{\alpha}$ degradation, and heated gAd was unable to degrade $I{\kappa}B{\alpha}$, suggesting that the effects of gAd were not due to endotoxin contamination. gAd activated IKK and Akt, and inhibition of either IKK or Akt by dominant-negative $IKK{\beta}$ ($DN-IKK{\beta}$) or DN-Akt overexpression blocked gAd-induced $I{\kappa}B{\alpha}$ degradation, suggesting that short-term incubation with gAd mediates inflammatory responses by activating the $I{\kappa}B/NF-{\kappa}B$ and PI3K/Akt pathways. Contrastingly, long-term stimulation with gAd induced, upon subsequent stimulation, tolerance to gAd, lipopolysaccharide, and CpG-oligodeoxynucleotide, which is associated with gAd-induced downregulation of IL-receptor-associated kinase-1 (IRAK-1) due to IRAK-1 transcriptional repression. Conclusively, our findings demonstrate that the pro- and anti-inflammatory responses to gAd in innate immune cells are time-dependent, and mediated by the activation of the $I{\kappa}B/NF-{\kappa}B$ pathway, and IRAK-1 downregulation, respectively.

Anti-inflammatory Effects of the Water Extract of Phyllostachys Folium via NF-κB Inhibition (죽엽 열수추출물의 염증억제 효과)

  • Son, Jin Won;Park, Sang Mi;Jung, Ji Yun;Hwangbo, Min;Cho, Il Je;Jung, Tae Young;Park, Chung A;Kim, Sang Chan;Jee, Seon Young
    • Herbal Formula Science
    • /
    • v.24 no.4
    • /
    • pp.259-269
    • /
    • 2016
  • Objectives : Phyllostachys Folium is leaves of Phyllostachys nigra var. henesis $S_{TAPF}$. In the East Asian traditional medicine, the herb has been used to treat nasal bleeding, dysuria, epilepsy and etc. The present study was conducted to evaluate the anti-inflammatory effects of the Phyllostachys Folium water extracts (PFE) in vitro and in vivo model. Methods : Cell viability was measured by MTT assay after the treatment of PFE and NO production was monitored by measuring the nitrite content in culture medium. iNOS, COX-2, $I{\kappa}B$, $p-I{\kappa}B{\alpha}$ amd $NF{\kappa}B$ were detected by immunoblot analysis, and levels of cytokine were analyzed by sandwich ELISA kit. Anti-edema effect of PFE was determined in the carrageenan-induced paw edema model in rats. Results : LPS increased NO and cytokines levels compared with control, these increases were attenuated by PFE. In addition, LPS-induced pro-inflammatory proteins such as iNOS, COX-2 were down regulated by PFE. These anti-inflammatory effect of PFE results from inhibition of phosphorylation of $I{\kappa}B$ and translocation of $NF-{\kappa}B$. Conclusion : These results show that PFE has some anti-inflammatory effects which might play a role in gram-negative bacterial infection inflammation and $NF{\kappa}B$ activated diseases.

Identification of the Constituents for Nrf2 Activation and NF-${\kappa}B$ Suppression in Dangguisoo-san

  • Kim, Kyun-Ha;Jeong, Ja-Haeng;Jeong, Han-Sol;Ha, Ki-Tae;Joo, Myung-Soo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.3
    • /
    • pp.344-350
    • /
    • 2012
  • Previously, we showed that Dangguisoo-san (DGSS), an herbal formula that has been traditionally used for the treatment of blood stagnation, is also applicable for inflammatory lung diseases. Activation of Nrf2, an anti-inflammatory transcription factor, and suppression of NF-${\kappa}B$, a pro-inflammatory transcription factor, were suggested as an underlying mechanism. However, the constituents responsible for these activities remain unidentified. To this end, we prepared the water extracts of the 9 constituents of DGSS and tested for their effect on Nrf2 by using an Nrf2-Luciferase reporter cell line and western blot analysis. Results show that Carthamus tinctorius L.(CT), one of the 9 constituents of DGSS, strongly activated Nrf2. Similarly, when measured the effect of the 9 constituents on NF-${\kappa}B$ by using an NF-${\kappa}B$-Luciferase reporter cell line and western blotting for nuclear p65, indicative of activated NF-${\kappa}B$, most constituents were capable of suppressing NF-${\kappa}B$ in various degrees. However, CT and Cyperus rotundus L. (CR) strongly suppressed NF-${\kappa}B$ activity elicited by LPS. Of note, CT activated Nrf2 and suppressed NF-${\kappa}B$ strongly as well. Our results contributes to corroborating the anti-inflammatory effects of DGSS by identifying CT and CR as two major herbs responsible for activating Nrf2 and suppressing NF-${\kappa}B$. These results suggest that CT and CR represent some of the effects of DGSS in the regulation of inflammation.

Anti-inflammatory Effects of Abeliophyllum distichum Flower Extract and Associated MAPKs and NF-κB Pathway in Raw264.7 Cells

  • Lee, Jin-Wook;Kang, Yoon-Joong
    • Korean Journal of Plant Resources
    • /
    • v.31 no.3
    • /
    • pp.202-210
    • /
    • 2018
  • Abeliophyllum distichum is a medicinal plant used in regional traditional medicine to relieve pain in inflammatory processes. In this study, anti-inflammatory effects of Abeliophyllum distichum flower (ADF) extract were examined. Furthermore, possible molecular mechanisms of the anti-inflammatory effects were dissected. The anti-inflammatory activity was investigated by inhibition of lipopolysaccharide (LPS) induced pro-inflammatory cytokine production in murine macrophage-like cell line Raw264.7 cells. The measurement of the induced pro-inflammatory cytokine levels were carried out by ELISA. The phosphorylation of ERK1/2, JNK, and MAPK, and the nuclear expression of nuclear factor NF-${\kappa}B$ p65 were investigated by Western blot analysis. The extract of ADF significantly decreased the production of pro-inflammatory cytokines. In addition, the extract suppressed the phosphorylation of ERK1/2, JNK, and p38 MAPK, and the nuclear translocation of NF-${\kappa}B$ p65 in activated cells. Our findings provide evidence for the popular use of Abeliophylli distichum in inflammation around Goesan region and also suggest that the flower extract has potential therapeutic benefits against various inflammatory diseases.

The Effects of Sunbanghwalmyung-eum Extract on Anti-oxidant, Anti-allergic and Anti-inflammatory ability in mouse cell (Mouse cell에서 선방활명음(仙方活命飮)의 항산화작용과 항알러지 및 항염증 효과)

  • Park, Min-Chul;Hong, Seung-Ug
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.21 no.2
    • /
    • pp.46-53
    • /
    • 2008
  • Background and Objectives : The aim of this study was to investigate the anti-oxidant, anti-allergic and anti-inflammatory ability of the Taglisodog-eum(SHE) extract on the RAW 264.7 and EL4 cells Materials and Methods : Three types of experiments were implemented for this study: first, the experiment to study the anti-oxidant effect of SHE using Riboflavin; second, in vitro experiment to investigate the inhibition of Th 2 cell differentiation by SHE using EL4 cells (IL-4 mRNA expression); third, the suppression of $NF-{\kappa}B$ activation using RAW 264.7 cells (iNOS and COX-2 mRNA expression). Results : The anti-oxidant ability of SHE were dose-dependantly increased. From in vitro, the LPS-induced iNOS and COX-2 mRNA expression were dose-dependantly decreased in the RAW264.7 cells treated with SHE and the PMA-induced IL-4 mRNA expression were also dose-dependantly decreased in EL4 cells. $NF-{\kappa}B$ activation was suppressed, and iNOS & COX-2 production were inhibited by SHE Conclusion : The results suggest that SHE has dose-dependant anti-oxidant ability, and has anti-allergic and anti-inflammatory effects through the suppression of $NF-{\kappa}B$ activation and the inhibition of Th 2 cell differentiation.

  • PDF

The Anti-Inflammatory Effects of Phytochemicals by the Modulation of Innate Immunity

  • Youn, Hyung-Sun
    • Biomedical Science Letters
    • /
    • v.18 no.3
    • /
    • pp.181-192
    • /
    • 2012
  • Toll-like receptors (TLRs) induce innate immune responses that are essential for host defense against invading microbial pathogens. In general, TLRs have two major downstream signaling pathways; myeloid differential factor 88 (MyD88) and Toll/IL-1R domain-containing adaptor inducing IFN-${\beta}$ (TRIF) leading to the activation of NF-${\kappa}B$ and IRF3. Numerous studies demonstrated that certain phytochemicals possessing anti-inflammatory effects inhibit NF-${\kappa}B$ activation induced by pro-inflammatory stimuli including lipopolysaccharide and tumor necrosis factor-${\alpha}$ ($TNF{\alpha}$). However, the direct molecular targets for such anti-inflammatory phytochemicals are not fully identified. In this paper, we will discuss about the molecular targets of phytochemicals in TLRs signaling pathways. These results present a novel anti-inflammatory mechanism of phytochemicals in TLRs signaling.

Anti-inflammatory Effects of Gelidium amansii in RAW 264.7 Macrophages (RAW 264.7 대식세포에서 Gelidium amansii의 항염증 효과)

  • Choi, Won-Sik;Kim, Young-Sun;Lee, Sang-Hyun;Chai, Kyu-Yun;Lee, Young-Haeng
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.3
    • /
    • pp.673-677
    • /
    • 2009
  • In order to verify the anti-inflammatory effects of Gelidium amansii, RAW264.7 macrophages were incubated with the extract of 70% ethanol solution (Ex), and activated with the endotoxin lipopolysaccharide (LPS). Ex inhibited the expression of the pro-inflammatory enzymes, including inducible nitric oxide (NO) synthase (iNOS) and cyclooxygenase-2 (COX-2), and the production of iNOS-mediated NO and COX-2-mediated prostglandin $E_2$ ($PGE_2$) production in a dose-dependent manner. Ex also reduced the release of the pro-inflammatory cytokines, including tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-1${\beta}$ (IL-1${\beta}$) and IL-6 in LPS-activated macrophages, The observed anti-inflammatory effects of Ex was associated with inactivation of the nuclear factor ${\kappa}B$ (NF-${\kappa}B$) that mediates the induction of iNOS, COX-2, TNF-${\alpha}$, IL-1${\beta}$, and IL-6. Further studies showed that Ex inactivated NF-${\kappa}B$ through inhibition of phosphorylation of the inhibitory ${\kappa}B$ ($l{\kappa}B$), Taken together, these results suggest that Gelidium amansii exerts anti-inflammatory effects by inhibiting the expression of pro-inflammatory enzymes and the secretion of pro-inflammatory cytokines via inactivation of NF-${\kappa}B$ and/or $l{\kappa}B$.

Leaves of Raphanus sativus L. Shows Anti-Inflammatory Activity in LPS-Stimulated Macrophages via Suppression of COX-2 and iNOS Expression.

  • Park, Hye-Jin;Song, Minjung
    • Preventive Nutrition and Food Science
    • /
    • v.22 no.1
    • /
    • pp.50-55
    • /
    • 2017
  • Raphanus sativus L. (RS) is a cruciferous vegetable that is widely consumed in Korea. The anticancer activity of leaves of RS (RSL) extract has been investigated; however, no studies focused on its anti-inflammatory effects. Therefore, the aim of the current study was to evaluate the anti-inflammatory effects of RSL extract. In brief, RSL powder was fractionated into n-hexane, chloroform, ethyl acetate, n-butanol, and water-soluble fractions. Lipopolysaccharide (LPS)-stimulated RAW264.7 cells were treated with each fraction for initial screening. It was found that the chloroform fraction significantly inhibited nitric oxide release in LPS-stimulated RAW264.7 cells with a half maximal inhibitory concentration value of $196{\mu}g/mL$. In addition, the mRNA and protein expression levels of inducible nitric oxide synthase, measured using reverse transcriptase-polymerase chain reaction and western blotting, respectively, were reduced in a concentration-dependent manner. Moreover, the inflammatory cyclooxygenase-2 enzyme expression decreased. Furthermore, the expression of nuclear factor-kappa B ($NF-{\kappa}B$), the key regulator of the transcriptional activation of the inflammatory cytokine genes, was reduced by the RSL chloroform fraction. Therefore, the results of our study suggest that RSL exhibits anti-inflammatory effects in LPS-stimulated macrophages via $NF-{\kappa}B$ inactivation.