• 제목/요약/키워드: anti-cancer

검색결과 3,359건 처리시간 0.036초

산초 (Zanthoxylum schnifolium)열매 분획물의 대장암세포(HT-29)에 대한 항암 효과 (Anti-cancer Activity of Human Colon Cancer (HT-29) Cell Line from Different Fraction of Zanthoxylum schnifolium Fruits)

  • 한웅;호위성;이영미
    • 생약학회지
    • /
    • 제42권3호
    • /
    • pp.282-287
    • /
    • 2011
  • This study was presented to the anti-cancer activity from different fraction of Zanthoxylum schnifolium fruits. The values for human colon cancer cell(HT-29) survival rate of 0.3 mg/mL of 70% EtOH and 70% MeOH ethyl acetate fraction extracts were 7.62${\pm}$0.173%, 7.66${\pm}$0.037%, respectively. It was shown that human colon cancer cell(HT-29) survival rate was in a dose-dependent manner. The percentages of cells were increased in the sub-G0 and G0/G1 phase region, meaning that cell proliferation was decreased. The RT-PCR demonstrated that 70% EtOH and 70% MeOH ethyl acetate fraction extracts were down-regulated the expression of Bcl-2 and survivin genes in HT-29 cells. We examined that 70% EtOH and 70% MeOH ethyl acetate fraction extracts anti-cancer activities initiated through ROS generation suggesting that HT-29 cells treated with ethyl acetate fraction extracts induced ROS generation. Our results revealed that the Zanthoxylum schnifolium fruit may expect for anti-cancer activities in HT-29 cells.

In Vivo Anti-tumor Activity of 3-Methyl-6-allylthiopyridazine in Nude Mice Xenografted with Hep-G2 Hepatocarcinoma

  • Kwon, Soon-Kyoung;Moon, Aree
    • Biomolecules & Therapeutics
    • /
    • 제13권2호
    • /
    • pp.113-117
    • /
    • 2005
  • Organosulfur compounds have been shown to exert an anti-cancer activity. In an attempt to develop novel chemopreventive and anti-cancer agents for liver cancer, we synthesized allylthiopyridazine derivatives. We have previously shown that allylthiopyridazine derivatives exert inhibitory effects on proliferation, invasion and migration of SK-Hep-1 hepatocarcinoma cells in vitro. The in vivo anti-tumor effect of 3-methvl-6-allylthiopy-ridazine, named as K6, was also reported. In this study, we further investigated the preclinical anti-cancer efficacy of K6 for hepatocarcinoma using nude mice xenografted with Hep-G2 hepatocellular carcinoma cells. K6(20-100 mg/kg, orally administered everyday for 30 days) markedly decreased the tumor volume of Hep-G2 cell-transplanted nude mice as evidenced by ultrasonographic and plethysmogranhic analyses. The inhibitory effect on tumor volume was lower than that exerted by doxorubicin (2 mg/kg), intravenously injected) which was used as a positive control. This study shows that K6 efficiently suppresses xenograft tumor growth, revealing K6 as apotential anti-cancer agent for suppressing in vivo progression of liver cancer. Given that hepatocarcinoma is among the most prevalent and lethal malignancies and there is no effective treatment to date, our study may contribute to the potential drug development for liver cancer.

Anthocyanins from the Fruit of Vitis Coignetiae Pulliat Inhibit TNF-Augmented Cancer Proliferation, Migration, and Invasion in A549 Cells

  • Lu, Jing Nan;Panchanathan, Radha;Lee, Won Sup;Kim, Hye Jung;Kim, Dong Hoon;Choi, Yung Hyun;Kim, GonSup;Shin, Sung Chul;Hong, Soon Chan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제18권11호
    • /
    • pp.2919-2923
    • /
    • 2017
  • Objective: Anthocyanins belong to a class of flavonoids, exhibiting antioxidant and anti-inflammatory actions have been reported to have anti-cancer effects. Here, we investigated whether anthocyanins can inhibit cancer cell proliferation, invasion, and angiogenesis in human lung cancer A549 cells, which are critically involved in cancer metastasis. Methods: We used anthocyanins from fruits of Vitis coignetiae Pulliat (AIMs) which has been used in Korean folk medicine for the treatment of inflammatory diseases and cancers. We have performed cell proliferation assays, cell invasion assay, gelatin zymography, wound healing assay and western blotting to examine whether anthocyanins can inhibit cancer cell proliferation, invasion, and angiogenesis in A549 cells. Result: AIMs did not inhibit cancer cell proliferation on A549 cells. Also, AIMs suppressed cancer migration, and invasion by supressing MMP-2 and MMP-9 expression. The Immuno-blotting results also revealed that AIMs suppressed the proteins involved in cancer proliferation (COX-2, C-myc, cyclin D1), migration and invasion (MMP-2, MMP-9), anti-apoptosis (XIAP, and c-IAP2), adhesion and angiogenesis (ICAM-1, VEGF). Conclusion: This study demonstrates that the anthocyanins isolated from fruits of Vitis coignetiae Pulliat inhibit cancer proliferation, cancer migration, and invasion that is involve in cancer-metastasis. This study provides evidence that AIMs might have anti-cancer effects on human lung cancer.

Isothiocyanates in Brassica: Potential Anti Cancer Agents

  • Sharma, Anubhuti;Sharma, Ashok;Yadav, Prashant;Singh, Dhiraj
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권9호
    • /
    • pp.4507-4510
    • /
    • 2016
  • Isothiocyanates are naturally occurring small molecules that are formed from glucosinolate precursors of cruciferous vegetables. Many isothiocyanates, both natural and synthetic, display anti-carcinogenic activity because they reduce activation of carcinogens and increase their detoxification. This minireview summarizes the current knowledge on isothiocyanates and focuses on their role as potential anti-cancer agents.

Anti-cancer Mechanism of Docosahexaenoic Acid in Pancreatic Carcinogenesis: A Mini-review

  • Park, Mirae;Kim, Hyeyoung
    • Journal of Cancer Prevention
    • /
    • 제22권1호
    • /
    • pp.1-5
    • /
    • 2017
  • Pancreatic cancer is a highly aggressive malignant tumor of the digestive system and radical resection, which is available to very few patients, might be the only possibility for cure. Since therapeutic choices are limited at the advanced stage, prevention is more important for reducing incidence in high-risk individuals with family history of pancreatic cancer. Epidemiological studies have shown that a high consumption of fish oil or ${\omega}3-polyunsaturated$ fatty acids reduces the risk of pancreatic cancers. Dietary fish oil supplementation has shown to suppress pancreatic cancer development in animal models. Previous experimental studies revealed that several hallmarks of cancer involved in the pathogenesis of pancreatic cancer, such as the resistance to apoptosis, hyper-proliferation with abnormal $Wnt/{\beta}-catenin$ signaling, expression of pro-angiogenic growth factors, and invasion. Docosahexaenoic acid (DHA) is a ${\omega}3-polyunsaturated$ fatty acid and rich in cold oceanic fish oil. DHA shows anti-cancer activity by inducing oxidative stress and apoptosis, inhibiting $Wnt/{\beta}-catenin$ signaling, and decreasing extracellular matrix degradation and expression of pro-angiogenic factors in pancreatic cancer cells. This review will summarize anti-cancer mechanism of DHA in pancreatic carcinogenesis based on the recent studies.

Autophagy Inhibition Promotes Quercetin Induced Apoptosis in MG-63 Human Osteosarcoma cells

  • Park, Sung-Jin;Yu, Su-Bin;Kim, Yong-Ho;Kim, In-Ryoung;Park, Hae-Ryoun;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • 제40권2호
    • /
    • pp.85-91
    • /
    • 2015
  • Quercetin is a natural flavonoid phytochemical that is extracted from various plants. Having an advantages due to its varied biological properties, such as anti-inflammatory, anti-viral, anti-oxidant, and anti-cancer effects, quercetin is used to treat many diseases. Recently, it has been reported that autophagy inhibition may play a key role in anti-cancer therapy. Therefore, in this study, we investigated the molecular mechanisms and anti-cancer effects of quercetin in human osteosarcoma cells via autophagy inhibition. We ascertained that quercetin inhibited cell proliferation and induced cell death, these process is demonstrated that apoptosis via the mitochondrial pathway and the caspase cascade. Quercetin also induced autophagy which was inhibited by 3-MA, autophagy inhibitor and the blockade of autophagy promoted the quercetin-induced apoptosis, confirming that autophagy is a pro-survival process. Thus, these findings demonstrate that quercetin is an effective anti-cancer agent, and the combination of quercetin and an autophagy inhibitor should enhance the effect of anti-cancer therapy.

Enhanced Anti-tumor Efficacy of Aspirin Combined with Triptolide in Cervical Cancer Cells

  • Chen, Rong-Hui;Tian, Yong-Jie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권5호
    • /
    • pp.3041-3044
    • /
    • 2013
  • Background: The non-steroidal anti-inflammatory drug (NSAID) aspirin (acetylsalicylic acid) is an inhibitor of cyclooxygenase enzymes. Recent studies have shown that aspirin could be used as an anti-tumor drug. Triptolide, the major compound extracted from the Chinese herb Tripteryglum wilfordii Hook.f, has now been shown that it can inhibit tumor growth. The aim of this study was to analyze the anti-tumor efficiency of aspirin and triptolide in cervical cancer cells. Methods: Viability of cervical cancer cell lines was assessed by the MTT method at various concentrations of aspirin and triptolide. Siha and HeLa cell apoptotic analysis was performed by flow cytometry. Real time-PCR and Western Blotting were used to analyze the expression of Bcl-2/Bax, Cyclin D1 and p16. Results: Viability in the combination group was significantly decreased as compared with either drug used alone. Expression change of Bcl-2/Bax, CyclinD1 and p16 appeared to play an important role in the synergistic killing effect on cervical cancer cell apoptosis. Conclusion: Aspirin and triptolide combination treatment may have synergistic anti-tumor effects on cervical cancer cells.

Successful Treatment of Advanced Gastric Cancer with Brain Metastases through an Abscopal Effect by Radiation and Immune Checkpoint Inhibitor Therapy

  • Muto, Momotaro;Nakata, Hirotaka;Ishigaki, Kenichi;Tachibana, Shion;Yoshida, Moe;Muto, Mizue;Yanagawa, Nobuyuki;Okumura, Toshikatsu
    • Journal of Gastric Cancer
    • /
    • 제21권3호
    • /
    • pp.319-324
    • /
    • 2021
  • The abscopal effect refers to the phenomenon in which local radiotherapy is associated with the regression of metastatic cancer that is distantly located from the irradiated site. Here, we present a case of a patient with advanced gastric cancer and brain metastases who was successfully treated with brain radiotherapy and anti-programmed death-1 (PD-1) therapy-induced abscopal effect. Although anti-PD-1 therapy alone could not prevent disease progression, the metastatic lesions in the brain and also in the abdominal lymph node showed a drastic response after brain radiotherapy and anti-PD-1 therapy. To our knowledge, this is the first reported case of successful treatment of advanced gastric cancer with multiple brain and abdominal lymph node metastases, possibly through anti-PD-1 therapy combined with brain radiotherapy-induced abscopal effect. We suggest that the combination of brain radiotherapy and anti-PD-1 therapy may be considered as a therapeutic option for advanced gastric cancer, especially when there is brain metastasis.

폐암세포주에서 황정(黃精)의 주요 성분인 Kaempferol의 항암 효능 (Anti-tumor Effect of Kaempferol, a Component of Polygonati Rhizoma, in Lung Cancer Cells)

  • 정영석;정지천
    • 동의생리병리학회지
    • /
    • 제25권5호
    • /
    • pp.816-822
    • /
    • 2011
  • Kaempferol, a component of Polygonati rhizoma, is one of the herbal flavonoids, which is used in therapeutic agent for anti-hypercholesterol, anti-hypertension and anti-diabetes. And it is also known to be effective in anti-cancer therapy for breast, prostate and other type of cancers. However, the anti-cancer therapeutic mechanisms are pooly understood. To address molecular mechanism underlying kaempferol-induced anti-cancer effects, we determined the effect of kaempferol on cell growth of the lung cancer cell lines, A549, H1299 and H460. From the FACS analysis, measurement of caspase activity, DAPI and tryptophan blue staining, and DNA fragmentation assay, we found that kaempferol induces apoptosis and H460 cells are most sensitive among the tested cell lines. In addition, we performed microarray to identify the genome-wide expression profiling regulated by kaempferol. Lots of cell cycle-related genes were under-expressed, whereas the genes related to TGF-beta/SMAD pathway were over-expressed in kaempferol-treated H460 cells. Additionally, kaempferol also increased expression levels of apoptosis related genes such as death receptors, FAS, TRAIL-R and TNF-R, and casepase-8 and caspase-10. Overall, our results suggest that kaempferol promotes anti-lung cancer therapeutic effects by inducing G1 arrest and apoptosis through TGF-beta/SMAD pathway and death receptors/caspase pathway, respectively.

Anti-Cancer Effects of Green Tea by Either Anti- or Pro-Oxidative Mechanisms

  • Hayakawa, Sumio;Saito, Kieko;Miyoshi, Noriyuki;Ohishi, Tomokazu;Oishi, Yumiko;Miyoshi, Mamoru;Nakamura, Yoriyuki
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권4호
    • /
    • pp.1649-1654
    • /
    • 2016
  • Tea derived from the leaves and buds of Camellia sinensis (Theaceae) is consumed worldwide. Green tea contains various components with specific health-promoting effects, and is believed to exert protective effects against diseases including cancer, diabetes and hepatitis, as well as obesity. Of the various tea components, the polyphenol catechins have been the subject of extensive investigation and among the catechins, (-)-epigallocatechin gallate has the strongest bioactivity in most cases. Our research group has postulated that hepatocyte nuclear factor-$4{\alpha}$, sterol regulatory element-binding proteins, and tumor necrosis factor-${\alpha}$ are targets of green tea constituents including (-)-epigallocatechin gallate for their anti-diabetes, anti-obesity, and anti-hepatitis effects, respectively. Published papers were reviewed to determine whether the observed changes in these factors can be correlated with anti-cancer effects of green tea. Two major action mechanisms of (-)-epigallocatechin gallate have been proposed; one associated with its anti-oxidative properties and the other with its pro-oxidative activity. When reactive oxygen species are assumed to be involved, our findings that (-)-epigallocatechin gallate downregulated hepatocyte nuclear factor-$4{\alpha}$, sterol regulatory element-binding proteins, and tumor necrosis factor-${\alpha}$ may explain the anti-cancer effect of green tea as well. However, further studies are required to elucidate which determinant directs (-)-epigallocatechin gallate action as an anti-oxidant or a pro-oxidant for favorable activity.