• Title/Summary/Keyword: anti inflammatory

Search Result 5,985, Processing Time 0.039 seconds

Ethanolic Extract of Pancake Mixture Powder Supplemented with Helianthus tuberosus Enhances Antidiabetic Effects via Inhibiting Inflammatory Mediator NO Production

  • Lee, Kyoung-Dong;Sun, Hyeon-Jin;Lee, Mina;Chun, Jiyeon;Shin, Tai-Sun;Choi, Kap Seong;Shim, Sun-Yup
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.2
    • /
    • pp.228-234
    • /
    • 2022
  • Helianthus tuberosus is perennial plant as Compositae family and is shown various physiological activities such as analgesic, antipyretic, anti-inflammatory, anti-fungal, anti-spasmodic, aperient, cholagogue, diuretic, spermatogenic, stomachic, and tonic effects. In this study, we investigated the antidiabetic and anti-inflammatory effects of pancake mixture powder (PM) supplemented with H. tuberosus (PMH) in rat skeletal muscle L6 cells and murine macrophage RAW 264.7 cells, respectively. PM and PMH inhibited in vitro α-glucosidase activity. Glucose consumption was increased by PM and PMH without cytotoxicity in rat myoblast L6 cells. Western blot analysis revealed that PM and PMH down-regulated glycogen synthase kinase (GSK)-3β activation in L6 cells. PM and PMH inhibited inflammatory mediator, nitric oxide (NO) production without cytotoxicity in LPS-induced RAW 264.7 cells. The anti-diabetic and anti-inflammatory effects of PMH was more stronger than those of PM. Anti-diabetic and anti-inflammatory effects of PMH would be due to functional characteristics of the supplemented H. tuberosus and the presence of garlic and onion used as ingredients of PM. Taken together, our results that addition of functional materials such as H. tuberosus in product has synergic effects and PMH is potential candidate for treatment of diabetes through inhibiting inflammation.

Anti-Helicobacter and Anti-inflammatory Effects of Sohamhyungtang in Helicobacter pylori-Infected Human Gastric Epithelial AGS cells

  • Won, SangBum;Yim, Dongsool;Choi, SungSook
    • Natural Product Sciences
    • /
    • v.23 no.3
    • /
    • pp.175-182
    • /
    • 2017
  • This study evaluated the anti-Helicobacter and anti-inflammatory effects of Sohamhyungtang (SHHT). The minimum inhibitory concentration (MIC) of SHHT against Helicobacter pylori (H. pylori) was determined by the agar dilution method. Expression of the H. pylori cagA gene in the presence of SHHT was determined by quantitative real-time polymerase chain reaction (qRT-PCR). Inhibition of H. pylori urease by SHHT was determined by the phenol-hypochlorite assay. Antiadhesion activity of SHHT was measured by urea-phenol red reagent. Inhibition of nitric oxide (NO) production in AGS cells was measured with Griess reagent. Inducible nitric oxide synthase (iNOS) and IL-8 mRNA expression in AGS cells which were infected with H. pylori was determined by qRT-PCR. IL-8 level was measured by enzyme-linked immunosorbent assay (ELISA). The MIC of SHHT was $100{\mu}g/mL$ and the expression of cagA gene was decreased about 25 folds in the presence of SHHT. H. pylori urease was inhibited 90% by SHHT. SHHT inhibited H. pylori adhesion on AGS cell in a concentration dependent manner. mRNA expression of iNOS and IL-8 and the production of NO and IL-8 were significantly decreased in the presence of SHHT. In conclusion, SHHT showed anti-Helicobacter activity and has potent anti-inflammatory effect on H. pylori-induced inflammation in human gastric epithelial AGS cells.

Anti-bacterial and Anti-inflammatory Effects of Angelica dahurica Extracts in Helicobacter pylori-infected Human Gastric Epithelial AGS Cells (백지(Angelica dahurica) 추출물의 Helicobacter pylori에 대한 항균력 및 H. pylori로 유도한 염증반응에 대한 항염 효과)

  • Choi, Min Kyeong;Yim, Dongsool;Choi, SungSook
    • Korean Journal of Pharmacognosy
    • /
    • v.49 no.3
    • /
    • pp.255-261
    • /
    • 2018
  • The aim of this study was to evaluate the anti-helicobacter activity and anti-inflammatory activity of Angelica dahurica (AD). The minimum inhibitory concentration(MIC) of AD against Helicobacter pylori(H. pylori), expression of the H. pylori cagA gene in the presence of AD was determined. Inhibition of H. pylori urease by AD, inhibition of nitric oxide (NO) production in AGS cells was measured. IL-8 mRNA expression in AGS cells which were infected with H. pylori and IL-8 level was measured. The MIC of MeOH Ex. of AD was $250{\mu}g/mL$ and the expression of cagA gene was decreased about 88% in the presence of AD. The activity of H. pylori urease was inhibited 70% by AD. mRNA expression of IL-8 and the production of NO and IL-8 were significantly decreased in the presence of AD. In conclusion, AD showed anti-Helicobacter activity and has potent anti-inflammatory effect on H. pylori-induced inflammation in human gastric epithelial AGS cells.

In Vivo Anti-Nociceptive and Anti-Inflammatory Effect of the Two Triterpenes, Ursolic Acid and 23-Hydroxyursolic Acid, from Cussonia bancoensis

  • Tapondjou, L.A.;Lontsi, David;Sondengam, Beiban-Luc;Choi, Jong-Won;Lee, Kyung-Tae;Jung, Hyun-Ju;Park, Hee-Juhn
    • Archives of Pharmacal Research
    • /
    • v.26 no.2
    • /
    • pp.143-146
    • /
    • 2003
  • Triterpenoids, ursolic acid (1) and 23-hydroxyursolic acid (2) were obtained from the hydrolysis of BuOH fraction of Cussonia bancoensis extract to test anti nociceptive and anti-inflammatory effect of C. bancoensis (Araliaceae). Compound 1 and 2 exhibited anti-nociceptive effects, which were determined by acetic acid-induced writhing test and hot plate test. The effect of 2 was much more potent in acetic acid-induced writhing test than in hot plate test. Compound 1 and 2 significantly inhibited 1%-carrageenan-induced edema in the rat. These results suggest that the two triterpenes, ursolic acid and 23-hydroxyursolic acid, are responsible for the antinociceptive and anti-inflammatory effect of C. bancoesnsis.

Anti-inflammatory effect of chloroform fraction of Coptidis rhizoma on the production of inflammatory mediators from LPS-stimulated BV2 microglial cells (황련 클로로포름 분획물의 뇌신경소교세포로부터 염증매개물질 생성억제 효능 연구)

  • Park, Yong-Ki;Lee, Kyuong-Yeol
    • The Korea Journal of Herbology
    • /
    • v.22 no.4
    • /
    • pp.109-116
    • /
    • 2007
  • Objectives : In the present study, we investigated anti-inflammatory effects of chloroform fraction of Coptidis rhizoma (CR-C) on the production of inflammatory mediators such as nitric oxide (NO) and proinflammatory cytokines, tumor necrosis factor-alpha (TNF-${\alpha}$) and interleukin-1beta (IL-1${\beta}$) in LPS-stimulated BV2 microglial cells. Methods : Copriditis rhizoma was extracted with 80% methanol, and then extracted with chloroform. BV2 cells were pre-treated with CR-C, and stimulated with LPS. The cytotoxicity was determined by MTT assay. The production of NO and cytokines was measured by Griess assay and ELISA. The mRNA expression of inducible nirtic oxide synthase (iNOS) and cytokines were determined by RT-PCR. Results : CR-C significantly inhibited the production of NO. TNF-${\alpha}$ and IL-1${\beta}$ in a dose-dependent manner in LPS-stimulated BV2 cells. In addition, CR-C suppressed the mRNA expressions of iNOS and inflammatory cytokines induced by LPS stimulation. These results indicate that CR-C was involved in anti-inflammatory effects in activated microglia. Conclusion : The present study suggests that chloroform extract of Coptidis rhizoma can be useful as a potential anti-inflammatory agent for treatment of various neurodegenerative diseases.

  • PDF

The Anti-inflammatory Mechanism of Pu-erh Tea via Suppression the Activation of NF-κB/HIF-1α in LPS-stimulated RAW264.7 Cells

  • Su-Jin Kim
    • Biomedical Science Letters
    • /
    • v.29 no.2
    • /
    • pp.58-65
    • /
    • 2023
  • Pu-erh tea, a popular and traditional Chinese tea, possesses various health-promoting effects, including inhibiting tumor cell progression and preventing type II diabetes and neurodegenerative disorders. However, the precise anti-inflammatory mechanisms are not well understood. In present study, we elucidated the anti-inflammatory mechanism of Pu-erh tea in lipopolysaccharide (LPS)-activated RAW264.7 cells. We explored the effects of Pu-erh tea on the levels of inflammatory-related genes, including inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and prostaglandin E2 (PGE2) in LPS-activated RAW264.7 cells. Moreover, we investigated its regulatory effects on nuclear factor-kappa B (NF)-κB and hypoxia-inducible-factor (HIF)-1α activation. The findings of this study demonstrated that Pu-erh tea inhibited the LPS-increased inflammatory cytokines and PGE2 release, as well as COX-2 and iNOS expression. Moreover, we confirmed that the anti-inflammatory mechanism of Pu-erh tea occurs via the inhibition of NF-κB and HIF-1α activation. Conclusively, these findings provide experimental evidence that Pu-erh tea may be useful candidate in the treatment of inflammatory-related diseases.

JS-III-49, a hydroquinone derivative, exerts anti-inflammatory activity by targeting Akt and p38

  • Yi, Young-Su;Kim, Mi-Yeon;Cho, Jae Youl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.3
    • /
    • pp.345-352
    • /
    • 2017
  • Since previous studies have reported that hydroquinone (HQ) exerted immunosuppressive and anti-inflammatory activity, various HQ derivatives have been synthesized and their biological activities investigated. In this study, we explored the anti-inflammatory activity of JS-III-49, a novel HQ derivative, in macrophage-mediated inflammatory responses. JS-III-49 suppressed the production of the inflammatory mediators nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) and down-regulated the mRNA expression of the inflammatory enzymes cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) as well as the expression of the pro-inflammatory cytokines interleukin-6 (IL-6) and IL-$1{\beta}$ without cytotoxicity in LPS-stimulated RAW264.7 cells. JS-III-49 inhibited nuclear translocation of the $NF-{\kappa}B$ transcription factors p65 and p50 by directly targeting Akt, an upstream kinase of the $NF-{\kappa}B$ pathway, in LPS-stimulated RAW264.7 cells. However, JS-III-49 did not directly inhibit the kinase activities of Src and Syk, which are upstream kinases of Akt, in LPS-stimulated RAW264.7 cells. Moreover, JS-III-49 suppressed the nuclear translocation of c-Fos, one of the components of AP-1, by specifically targeting p38, an upstream mitogen-activated protein kinase (MAPK) in the AP-1 pathway in LPS-stimulated RAW264.7 cells. These results suggest that JS-III-49 plays an anti-inflammatory role in LPS-stimulated macrophages by targeting Akt and p38 in the $NF-{\kappa}B$ and AP-1 pathways, respectively.

Nypa fruticans wurmb regulates the secretion level of inflammatory cytokines in vitro models.

  • Jin, Yu-Mi;Kim, Seong-Seon;Lee, Jong-Hyun;Jeon, Yong-Deok;Jin, Jong-Sik
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.128-128
    • /
    • 2018
  • Nypa fruticans wurmb (NF) has been used as traditional medicinal food in Asian countries. Especially, NF has been used for conventional medicine to treat inflammatory periodontal diseases. Previous studies have been shown that NF has large amount of useful constituents such as phenolic acids, polyphenols and flavonoids. Also, NF is known as having medicinal effects such as anti-oxidant, anti-inflammatory and cholesterol-lowering effects. NF has recently been attracted to use complementary medicinal food on inflammatory diseases in Korea. However, there are no obvious effects in inflammatory and metabolic diseases also mechanisms has been studied yet. The purpose of this study was to investigate the anti-inflammatory effects of NF and steamed-NF (SNF), which recently has been used as health food, using Human keratinocyte cell line (HaCaT) and Human mast cell line (HMC-1). The cytotoxicities of NF and SNF were measured by using MTT assays in HaCaT cells and HMC-1 cell. To evaluate anti-inflammatory effects of NF and SNF, HaCaT cells were stimulated with tumor necrosis factor $(TNF)-{\alpha}$ and Interferon $(IFN)-{\gamma}$. Also, HMC-1 cells were stimulated with phorbol-12-myristate-13-acetate (PMA) and A23187 calcium ionophore (A23187) to induce allergic inflammation. Inflammatory cytokine were measured by enzyme-linked immunosorbent assay (ELISA). In this result, the extract of NF and SNF (0.01 - 1mg/ml) did not show cytotoxicity in HaCaT cells and HMC-1 cells. In addition, the NF and SNF suppressed the production of interleukin (IL)-6 and IL-8 in HaCaT cells at highest concentration. Furthermore, the treatment of SNF significantly inhibited the secretion level of IL-8 in PMA plus A23187-stimulated HMC-1 cells compared with NF treatment group. These results suggest that the extract of NF and SNF may serve as a potential therapy for skin inflammatory diseases.

  • PDF

Anti-inflammatory effects of proanthocyanidin-rich red rice extract via suppression of MAPK, AP-1 and NF-κB pathways in Raw 264.7 macrophages

  • Limtrakul, Pornngarm;Yodkeeree, Supachai;Pitchakarn, Pornsiri;Punfa, Wanisa
    • Nutrition Research and Practice
    • /
    • v.10 no.3
    • /
    • pp.251-258
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Several pharmacological properties of red rice extract have been reported including anti-oxidant, anti-tumor, and reduced cancer cell invasion. This study was conducted to evaluate the anti-inflammatory effects of red rice extract on the production of inflammatory mediators in lipopolysaccharide (LPS)-induced Raw 264.7 macrophages. MATERIALS/METHODS: Pro-inflammatory cytokines including tumor necrosis factor-${\alpha}$ and interleukin-6 were determined by ELISA and cyclooxygenase-2 and inducible nitric oxide synthase expression was evaluated using western blot analysis. In addition, the signaling pathway controlling the inflammatory cascade such as nuclear factor kappa B ($NF-{\kappa}B$), activator proteins-1 (AP-1), and mitogen-activated protein kinase (MAPK) was determined. RESULTS: Our results showed that red rice polar extract fraction (RR-P), but not non-polar extract fraction, inhibited interleukin-6, tumor necrosis factor-${\alpha}$, and nitric oxide production in LPS-induced Raw 264.7 cells. RR-P also reduced the expression of inflammatory enzymes, inducible nitric oxide synthase, and cyclooxygenase-2. In addition, activation of AP-1 and $NF-{\kappa}B$ transcription factor in the nucleus was abrogated by RR-P. RR-P inhibited the phosphorylation of extracellular signaling-regulated kinase 1/2, c-Jun NH2-terminal kinase, and p38 MAPK signaling responsible for the expression of inflammatory mediators in LPS-stimulated Raw 264.7 cells. Based on chemical analysis, high amounts of proanthocyanidin and catechins were detected in the RR-P fraction. However, only proanthocyanidin reduced $NF-{\kappa}B$ and AP-1 activation in LPS-activated Raw 264.7 cells. CONCLUSION: These observations suggest that the anti-inflammatory properties of RR-P may stem from the inhibition of pro-inflammatory mediators via suppression of the AP-1, $NF-{\kappa}B$, and MAPKs pathways.

Donggwaja Suppresses Inflammatory Reaction Via Tumor Necrosis Factor α-induced Protein3 and NF-κB (Tumor necrosis factor α - induced protein3의 발현과 NF-κB 활성 억제를 통한 동과자의 염증반응 억제 효과)

  • Kim, Kyun Ha;Choi, Jun-Yong;Joo, Myungsoo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.35 no.1
    • /
    • pp.15-21
    • /
    • 2021
  • Donggwaja (Benincasae Semen), the seed of Benincasa hispida (Thunb.) Cogn., has been used in Korean traditional medicine to control the body heat and water retention caused by various diseases. Both the symptoms targeted by the herbal medicine in clinic and studies with disease mouse models support the potential anti-inflammatory effect of Donggwaja. However, it is less understood how Donggwaja exerts its possible anti-inflammatory effect. Here, we present evidence that Donggwaja suppresses macrophage inflammatory reactions via expressing tumor necrosis factor a-induced protein 3 (TNFAIP3 or A20) and suppressing NF-kB activity. The ethanol extract of Donggwaja (EED) showed no toxicity when added to RAW 264.7 cells less than 100mg/ml. When treating the cells for 16 h, EED significantly suppressed the nuclear localization of NF-kB, suggesting that EED suppresses NF-kB activity. Concordantly, a semi-quantitative RT-PCR analysis showed that EED decreased the expression of prototypic pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-a, IL(interleukin)-6, and IL-1b. EED induced in RAW 264.7 cells the expression of A20, a ubiquitin modulator that suppresses inflammatory signaling cascades initiated from TLR4 and TNF and IL-1 receptors, while not affecting the induction of Nrf2, an anti-inflammatory factor that could suppress the effect of NF-kB. These results suggest that EED exerts its suppressive effect on inflammation, at least in part, by expressing anti-inflammatory factor A20 and suppressing pro-inflammatory factor NF-kB activity.