DOI QR코드

DOI QR Code

Ethanolic Extract of Pancake Mixture Powder Supplemented with Helianthus tuberosus Enhances Antidiabetic Effects via Inhibiting Inflammatory Mediator NO Production

  • Lee, Kyoung-Dong (Department of Oriental Medicine Materials, College of Oriental Medicine, Dongsin University) ;
  • Sun, Hyeon-Jin (Subtropical Horticulture Research Institute, Jeju National University) ;
  • Lee, Mina (College of Pharmacy, Sunchon National University) ;
  • Chun, Jiyeon (Department of Food Science and Technology, College of Life Science and Natural Resources, Sunchon National University) ;
  • Shin, Tai-Sun (Division of Food and Nutrition, Chonnam National University) ;
  • Choi, Kap Seong (Department of Food Science and Technology, College of Life Science and Natural Resources, Sunchon National University) ;
  • Shim, Sun-Yup (Department of Food Science and Technology, College of Life Science and Natural Resources, Sunchon National University)
  • Received : 2021.09.23
  • Accepted : 2022.02.03
  • Published : 2022.06.28

Abstract

Helianthus tuberosus is perennial plant as Compositae family and is shown various physiological activities such as analgesic, antipyretic, anti-inflammatory, anti-fungal, anti-spasmodic, aperient, cholagogue, diuretic, spermatogenic, stomachic, and tonic effects. In this study, we investigated the antidiabetic and anti-inflammatory effects of pancake mixture powder (PM) supplemented with H. tuberosus (PMH) in rat skeletal muscle L6 cells and murine macrophage RAW 264.7 cells, respectively. PM and PMH inhibited in vitro α-glucosidase activity. Glucose consumption was increased by PM and PMH without cytotoxicity in rat myoblast L6 cells. Western blot analysis revealed that PM and PMH down-regulated glycogen synthase kinase (GSK)-3β activation in L6 cells. PM and PMH inhibited inflammatory mediator, nitric oxide (NO) production without cytotoxicity in LPS-induced RAW 264.7 cells. The anti-diabetic and anti-inflammatory effects of PMH was more stronger than those of PM. Anti-diabetic and anti-inflammatory effects of PMH would be due to functional characteristics of the supplemented H. tuberosus and the presence of garlic and onion used as ingredients of PM. Taken together, our results that addition of functional materials such as H. tuberosus in product has synergic effects and PMH is potential candidate for treatment of diabetes through inhibiting inflammation.

Keywords

References

  1. Chen F, Long X, Liu Z, Shao H, Liu L. 2014. Analysis of phenolic acids of jerusalem artichoke (Helianthus Tuberosus L.) responding to salt-stress by liquid chromatography/tandem mass spectrometry. Sci. World J. 2014: 568043. https://doi.org/10.1155/2014/568043
  2. Chen F, Long X, Yu M, Liu Z, Liu L, Shao H. 2013. Phenolics and antifungal activities analysis in industrial crop jerusalem artichoke (Helianthus Tuberosus L.) leaves. Ind. Crops Prod. 47: 339-345. https://doi.org/10.1016/j.indcrop.2013.03.027
  3. Chen F, Long X, Li E. 2019. Evaluation of antifungal phenolics from Helianthus tuberosus L. leaves against Phytophythora capsici Leonian by chemometric analysis. Molecules 24: 4300. https://doi.org/10.3390/molecules24234300
  4. Gibson GR, Roberfroid MB. 1995. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 125: 1401-1412. https://doi.org/10.1093/jn/125.6.1401
  5. Jung YJ, Kim BO, Kwak JH, Pyo S. 2016. Jerusalem Artichoke (Helianthus tuberosus) on the inflammatory parkcrine loop between macrophage and adipocytes. J. Agric. Food. Chem. 64: 9317-9325. https://doi.org/10.1021/acs.jafc.6b03407
  6. Wang PC, Zhao S, Yang BY, Wang QH, Kuang HX. 2016. Anti-diabetic polysaccharides from natural sources: A review. Carbohydr. Polym. 148: 86-97. https://doi.org/10.1016/j.carbpol.2016.02.060
  7. Wang Y, Zhao Y, Xue F, Nan X, Wang H, Hua D, et al. 2020. Nutritional value, bioactivity and application potential of Jerusalem artichoke (Helianthus tuberosus L.) as a neotype feed resource. Anim. Nutr. 6: 429-437. https://doi.org/10.1016/j.aninu.2020.09.001
  8. Muscogiuri G, Barrea L, Caprio M, Ceriani F, Chavez AO, El Ghoch M, et al. 2021. Nutritional guidelines for the management of insulin resistance. Crit. Rev. Food. Sci. Nutr. 2: 1-14.
  9. Ritz E. 1999. Nephropathy in type 2 diabetes. J. Inter. Med. 245: 111-126. https://doi.org/10.1046/j.1365-2796.1999.00411.x
  10. Vinik AI, Park TS, Stansberry KB, Pittenger GL. 2000. Diabetic neuropathies. Diabetologia 43: 957-973. https://doi.org/10.1007/s001250051477
  11. Kolb H, Mandrup-Poulsen T. 2005. An immune origin of type 2 diabetes? Diabetologia 48: 1038-1050. https://doi.org/10.1007/s00125-005-1764-9
  12. Koenen M, Hill MA, Cohen P, Sowers JR. 2021. Obesity, adipose tissue and vascular dysfunction. Circ. Res. 128: 951-968. https://doi.org/10.1161/CIRCRESAHA.121.318093
  13. Maggio CA, Pi-Sunyer FX. 2003. Obesity and type 2 diabetes. Endocrinol. Metab. Clin. North Am. 32: 805-822. https://doi.org/10.1016/S0889-8529(03)00071-9
  14. Mariana M, Ma L, Freedman BI. 2012. Genetic and environmental factors associated with type 2 diabetes and diabetic vascular complications. Rev. Diabet. Rev. 9: 6-22.
  15. Rask-Madsen C, King GL. 2013. Vascular complications of diabetes: Mechanisms of injury and protective factors. Cell. Metab. 1: 20-33. https://doi.org/10.1016/j.cmet.2012.11.012
  16. Keen H, Clark C, Laakso M. 1999. Reducing the burden of diabetes: Managing cardiovascular disease. Diabetes Metab. Res. Rev. 15: 186-196. https://doi.org/10.1002/(SICI)1520-7560(199905/06)15:3<186::AID-DMRR30>3.0.CO;2-5
  17. Kuzuya T, Nakagawa S, Satoh J, Kanazawa Y, Iwamoto Y, Kobayashi M, et al. 2002. Report of the committee on the classification and diagnostic criteria of diabetes mellitus. Diabet. Res. Clin. Pract. 55: 65-85. https://doi.org/10.1016/S0168-8227(01)00365-5
  18. Manson JE, Colditz GA, Stampfer MJ, Willett WC, Krolewski AS, Rosner B, et al. 1991. A prospective study of maturity-onset diabetes mellitus and risk of coronary heart disease and stroke in women. Arch. Inter. Med. 151: 1141-1147. https://doi.org/10.1001/archinte.1991.00400060077013
  19. Pickup JC, Crook MA. 1998. Is type II diabetes mellitus a disease of the innate immune system? Diabetologia 41: 1241-1248. https://doi.org/10.1007/s001250051058
  20. Kolb H, Mandrup-Poulsen T. 2005. An immune origin of type 2 diabetes? Diabetologia 48: 1038-1050. https://doi.org/10.1007/s00125-005-1764-9
  21. Ferrero-Miliani L, Nielsen OH, Andersen PS, Girardin SE. 2007. Chronic inflammation : importance of NOD2 and NALP3 in interleukin-1 β generation. Clin. Exp. Immunol. 147: 227-235. https://doi.org/10.1111/j.1365-2249.2006.03261.x
  22. Choy EH, Panayi GS. 2001. Cytokine pathways and joint inflammation in rheumatoid arthritis. N. Engl. J. Med. 344: 907-916. https://doi.org/10.1056/NEJM200103223441207
  23. Hamza N, Berke B, Cheze C, Agli AN, Robinson P, Gin H, et al. 2010. Prevention of type 2 diabetes induced by high fat diet in the C57BL/6J mouse by two medicinal plants used in traditional treatment of diabetes in the east of Algeria. J. Ethnopharmacol. 128: 513-518. https://doi.org/10.1016/j.jep.2010.01.004
  24. Ibeh BO, Ezeaja MI. 2011. Preliminary study of antidiabetic activity of the methanolic leaf extract of Axonopus compressus (P. Beauv) in alloxan-induced diabetic rats. J. Ethnopharmacol. 3: 713-716. https://doi.org/10.1016/j.jep.2011.10.009
  25. Ferris FLD. 1993. Diabetic retinopathy. Diabet. Care 16: 322-325. https://doi.org/10.2337/diacare.16.1.322
  26. Li T, Zhang XD, Song YW, Liu JW. 2005. A microplate-based screening method for α-glucosidase inhibitors. Chin. J. Clin. Pharmacol. Ther 10: 1128-1134. https://doi.org/10.3969/j.issn.1009-2501.2005.10.011
  27. Estrada DE, Ewart HS, Tsakiridis T, Volchuk A, Ramlal T, Tritschler H, 1996. Stimulation of glucose uptake by the natural coenzyme alpha-lipoic acid/thioctic acid: Participation of elements of the insulin signaling pathway. Diabetes 45: 1798-1804. https://doi.org/10.2337/diabetes.45.12.1798
  28. Yin J, Zuberi A, Gao Z, Liu D, Liu Z, Ye J. 2009. Shilianhua extract inhibits GSK-3 and promotes glucose metabolism. Am. J. Physiol. Endocrinol. Metab. 296: E1275-E1280. https://doi.org/10.1152/ajpendo.00092.2009
  29. Zhang S, Kim AT, Liu X, Yan L, Kim SM. 2020. Antioxidant and antidiabetic activities of vanadium-binding protein and trifuhalol A. J. Food Biochem. 44: e13540.
  30. Jeong HJ, Kim JS, Sa YJ, Kim MO, Yang J, Kim M. 2011. Antioxidant activity and α-glucosidase inhibitory effect of Jerusalem Arichoke (Heliantus tuberosus) methanol extracts by heat treatment conditions. Korean J. Med. Corp Sci. 19: 257-263. https://doi.org/10.7783/KJMCS.2011.19.4.257
  31. Melmer A, Kempf P, Laimer M. 2018. The role of physical exercise in obesity and diabetes. Praxis 107: 971-976. https://doi.org/10.1024/1661-8157/a003065
  32. Pulgaron ER, Delamater AM. 2014. Obesity and type 2 diabetes in children: epidemiology and treatment. Curr. Diab. Rep. 14: 508. https://doi.org/10.1007/s11892-014-0508-y
  33. Sawicka B, Skiba D, Pszczolkowski P, Aslan I, Sharifi-Rad J, Krochmal-Marczak B. 2020. Jerusalem artichoke (Helianthus tuberosus L.) as a medicinal plant and its natural products. Cell. Mol. Biol. 66: 160-777. https://doi.org/10.14715/cmb/2020.66.4.20
  34. Defrono RA, Tripathy D. 2009. Skeletal muscle insulin resistance is the primary defect in type-2 diabetes. Diabet. Care 32: S157-163. https://doi.org/10.2337/dc09-S302
  35. Cantley LC. 2002. The phosphoinositide 3-kinase pathway. Science 296: 1655-1657. https://doi.org/10.1126/science.296.5573.1655
  36. Xu P, Xiao J, Chi S. 2021. Piperlongumine attenuates oxidative stress, inflammatory, and apoptosis through modulating the GLUT-2/4 and AKT signaling pathway in streptozotocin-induced diabetic rats. J. Biochem. Mol. Toxicol. 35: 1-12.
  37. Postic C, Burcelin R, Rencurel F, Pegorier JP, Loizeau M, Girard J. 1993. Evidence for a transient inhibitory effect of insulin on GLUT2 expression in the liver: studies in vivo and in vitro. Biochem. J. 293: 119-124. https://doi.org/10.1042/bj2930119
  38. Henriksen EJ, Kinnick TR, Teachey MK, O'Keefe MP, Ring D, Johnson KW, et al. 2003. Modulation of muscle insulin resistance by selective inhibition of GSK-3 in Zucker diabetic fatty rats. Am. J. Physiol. Endocrinol. Metab. 284: E892-E900. https://doi.org/10.1152/ajpendo.00346.2002
  39. Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin O, Woodgett JR. 2000. Requirement for glycogen synthase kinase-3β in cell survival and NF-κB activation. Nature 406: 86-90. https://doi.org/10.1038/35017574
  40. Ilouz R, Kowalsman N, Eisenstein M, Eldar-Finkelman H. 2006. Identification of novel glycogen synthase kinase-3β substrate-interacting residues suggests a common mechanism for substrate recognition. J. Biol. Chem. 281: 30621-30630. https://doi.org/10.1074/jbc.M604633200
  41. Chen ZJ, Zhao XS, Fan TP, Qi HX, Li D. 2020. Glycine improves ischemic stroke through miR-19a-3p/AMPK/GSK-3β/HO-1 pathway. Drug Des. Dev. Ther. 14: 2021-2031. https://doi.org/10.2147/DDDT.S248104
  42. Cross DA, Alessi DR, Vandenheede JR, McDowell HE, Hundal HS. Cohen P. 1994. The inhibition of glycogen synthase kinase-3 by insulin or insulin-like growth factor 1 in the rat skeletal muscle cell line L6 is blocked by wortmannin, but not by rapamycin: evidence that wortmannin blocks activation of the mitogen-activated protein kinase pathway in L6 cells between Ras and Raf. Biochem. J. 303: 21-26. https://doi.org/10.1042/bj3030021
  43. Martin M, Rehani K, Jope RS, Michalek SM. 2005. Toll-like receptor mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat. Immunol. 6: 777-784. https://doi.org/10.1038/ni1221
  44. Shoelson SE, Lee JS, Goldfine AB. 2006. Inflammation and insulin resistance. J. Clin. Investig. 116: 1793-1801. https://doi.org/10.1172/JCI29069
  45. Gautam S, Pal S, Maurya R, Srivastava AK. 2015. Ethanolic extract of Allium cepa stimulates glucose transporter typ 4-mediated glucose uptake by the activation of insulin signaling. Planta Med. 81: 208-214. https://doi.org/10.1055/s-0034-1396201
  46. Motloung DM, Mashele SS, Matowane GR, Swain SS, Bonnet SL, Noreljaleel AEM, et al. 2020. Synthesis, characterization, antidiabetic and antioxidative evaluation of a novel Zn(II)-gallic acid complex with multi-facet activity. J. Pharm. Pharmacol. 72: 1412-1426. https://doi.org/10.1111/jphp.13322
  47. Noipha K, Ratanachaiyavong S, Ninla-Aesong P. 2010. Enhancement of glucose transport by selected plant foods in muscle cell line L6. Diabetes Res. Clin. Pract. 89: 22-26. https://doi.org/10.1016/j.diabres.2010.03.017