• Title/Summary/Keyword: anti inflammatory

Search Result 5,985, Processing Time 0.036 seconds

Anti-inflammatory Effects of Ojeok-san in LPS-induced Inflammatory Rat Model (LPS유도 염증 동물모델에서 오적산의 항염증 효과)

  • Kim, Joo-Hee;Lee, Dong Hyuk;Kim, Ji Hye;Jung, Sung Eun;Ham, Seong Ho;Yang, Woong Mo;Kwon, Bo-in
    • The Journal of Korean Medicine
    • /
    • v.42 no.2
    • /
    • pp.21-30
    • /
    • 2021
  • Objectives: The aim of this study is to investigate the anti-inflammatory effects of Ojeok-san and compare the therapeutic effects according to its formation. Methods: We evaluated the anti-inflammatory effects of Ojeok-san using lipopolysaccharide (LPS) induced inflammatory animal model. Male SD rats were administered intra-orally with two different formulation types of Ojeok-san according to prescribed dosage. One hour later, to induce inflammatory responses, subsequent intra-peritoneal injection of LPS was conducted. After 5 hours later, serum TNF-α, IL-1β, IL-6 and PGE2 levels were measured by ELISA to assess the alteration of pro-inflammatory markers. Results: In our experiment, regardless of its formation, administration of Ojeok-san decreased TNF-𝛼, IL-1𝛽, IL-6 and PGE2 level in serum. Furthermore, LPS-induced toxicity of liver and kidney was not detected by Ojeok-san administration. Conclusions: The anti-inflammatory effect of Ojeok-san was shown in LPS-induced inflammatory model by decreasing pro-inflammatory markers, and there would be no significant difference in therapeutic effect between two formulation types of Ojeok-san.

Anti-inflammatory Effects of Abeliophyllum distichurn Flower Extract

  • Lee, Jin Wook;Kang, Yoon Joong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.89-89
    • /
    • 2018
  • Abeliophyllum distichum is a medicinal plant used in regional traditional medicine to relieve pain in inflammatory processes. In this study, anti-inflammatory effects of Abeliophyllum distichum stem (ADS) ethyl acetate extract were examined. Furthermore, possible molecular mechanisms of the anti-inflammatory effects were dissected. The anti-inflammatory activity was investigated by inhibition of lipopolysaccharide (LPS) induced pro-inflammatory cytokine production in murine macrophage-like cell line Raw264.7 cells and human microglial cell line BV2 cells. The measurement of the induced pro-inflammatory cytokine levels were carried out by ELISA. The phosphorylation of ERK1/2, JNK, and MAPK, and the nuclear expression of nuclear factor $NF-{\kappa}B$ p65 were investigated by Western blot analysis. The extract of ADS significantly decreased the production of pro-inflammatory cytokines. In addition, the extract suppressed the phosphorylation of ERK1/2, JNK, and p38 MAPK, and the nuclear translocation of $NF-{\kappa}B$ p65 in activated cells. Our findings provide evidence for the popular use of Abeliophylli distichum in inflammation around Goesan region and also suggest that the stem extract has potential therapeutic benefits against several inflammatory diseases.

  • PDF

The Anti-inflammatory Mechanism of Protaetia brevitarsis Lewis via Suppression the Activation of NF-κB and Caspase-1 in LPS-stimulated RAW264.7 Cells

  • Myung, Noh-Yil;Ahn, Eun-Mi;Kim, Su-Jin
    • Biomedical Science Letters
    • /
    • v.26 no.4
    • /
    • pp.267-274
    • /
    • 2020
  • The larva of Protaetia brevitarsis Lewis (P. brevitarsis), edible insect, is traditionally consumed as alternative source of nutrients and has various health benefits. However, the exact pharmaceutical effects of P. brevitarsis on inflammatory response are still not well understood. Thus, we investigated the anti-inflammatory effects and mechanisms of P. brevitarsis in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. We investigated the effects of P. brevitarsis on the expression levels of inflammatory-related genes, including inflammatory cytokines, prostaglandin E2 (PGE2), cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) in LPS-stimulated RAW264.7 cells. To understand the anti-inflammatory mechanism of P. brevitarsis, we explored the regulatory effect of P. brevitarsis on nuclear factor (NF)-κB and caspase-1 activation. The findings of this study demonstrated that P. brevitarsis inhibits the LPS-induced inflammatory cytokine and PGE2 levels, as well as COX-2 and iNOS expression. Moreover, we confirmed that the anti-inflammatory effect of P. brevitarsis occurs via suppression of the activation of NF-κB and caspase-1. Conclusively, these findings provide experimental evidence that P. brevitarsis may be useful candidate for the treatment of inflammatory-related diseases.

Anti-angiogenic, Anti-inflammatory and Anti-nociceptive Activities of Vanillin in ICR Mice

  • Lim, Eun-Ju;Kang, Hyun-Jung;Jung, Hyun-Joo;Song, Yun-Seon;Lim, Chang-Jin;Park, Eun-Hee
    • Biomolecules & Therapeutics
    • /
    • v.16 no.2
    • /
    • pp.132-136
    • /
    • 2008
  • The current study aimed to assess some novel pharmacological activities of vanillin. Vanillin inhibited the chick chorioallantoic membrane (CAM) angiogenesis. Vanillin had anti-inflammatory activity using the acetic acid-induced permeability model in mice. Anti-nociceptive activity of vanillin was shown using the acetic acid-induced writhing test in mice. Vanillin inhibited production of nitric oxide (NO) and induction of inducible nitric oxide synthase (iNOS) but not cyclooxygenase-2 (COX-2) in the lipopolysaccharide (LPS)-activated RAW264.7 macrophages. Vanillin decreased the level of iNOS mRNA in the LPS-activated macrophages. Taken together, these results suggest that vanillin can have anti-angiogenic, anti-inflammatory and anti-nociceptive activities in ICR Mice.

Phosphorylation of Akt Mediates Anti-Inflammatory Activity of 1-p-Coumaroyl ${\beta}$-D-Glucoside Against Lipopolysaccharide-Induced Inflammation in RAW264.7 Cells

  • Vo, Van Anh;Lee, Jae-Won;Kim, Ji-Young;Park, Jun-Ho;Lee, Hee Jae;Kim, Sung-Soo;Kwon, Yong-Soo;Chun, Wanjoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.1
    • /
    • pp.79-86
    • /
    • 2014
  • Hydroxycinnamic acids have been reported to possess numerous pharmacological activities such as antioxidant, anti-inflammatory, and anti-tumor properties. However, the biological activity of 1-p-coumaroyl ${\beta}$-D-glucoside (CG), a glucose ester derivative of p-coumaric acid, has not been clearly examined. The objective of this study is to elucidate the anti-inflammatory action of CG in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. In the present study, CG significantly suppressed LPS-induced excessive production of pro-inflammatory mediators such as nitric oxide (NO) and $PGE_2$ and the protein expression of iNOS and COX-2. CG also inhibited LPS-induced secretion of pro-inflammatory cytokines, IL-$1{\beta}$ and TNF-${\alpha}$. In addition, CG significantly suppressed LPS-induced degradation of $I{\kappa}B$. To elucidate the underlying mechanism by which CG exerts its anti-inflammatory action, involvement of various signaling pathways were examined. CG exhibited significantly increased Akt phosphorylation in a concentration-dependent manner, although MAPKs such as Erk, JNK, and p38 appeared not to be involved. Furthermore, inhibition of Akt/PI3K signaling pathway with wortmannin significantly, albeit not completely, abolished CG-induced Akt phosphorylation and anti-inflammatory actions. Taken together, the present study demonstrates that Akt signaling pathway might play a major role in CG-mediated anti-inflammatory activity in LPS-stimulated RAW264.7 macrophage cells.

3,4,5-Trihydroxycinnamic Acid Inhibits Lipopolysaccharide-Induced Inflammatory Response through the Activation of Nrf2 Pathway in BV2 Microglial Cells

  • Lee, Jae-Won;Choi, Yong-Jun;Park, Jun-Ho;Sim, Jae-Young;Kwon, Yong-Soo;Lee, Hee Jae;Kim, Sung-Soo;Chun, Wanjoo
    • Biomolecules & Therapeutics
    • /
    • v.21 no.1
    • /
    • pp.60-65
    • /
    • 2013
  • 3,4,5-Trihydroxycinnamic acid (THC) is a derivative of hydroxycinnamic acids, which have been reported to possess a variety of biological properties such as anti-inflammatory, anti-tumor, and neuroprotective activities. However, biological activity of THC has not been extensively examined. Recently, we reported that THC possesses anti-inflammatory activity in LPS-stimulated BV2 microglial cells. However, its precise mechanism by which THC exerts anti-inflammatory action has not been clearly identified. Therefore, the present study was carried out to understand the anti-inflammatory mechanism of THC in BV2 microglial cells. THC effectively suppressed the LPS-induced induction of pro-inflammatory mediators such as NO, TNF-${\alpha}$, and IL-$1{\beta}$. THC also suppressed expression of MCP-1, which plays a key role in the migration of activated microglia. To understand the underlying mechanism by which THC exerts these anti-inflammatory properties, involvement of Nrf2, which is a cytoprotective transcription factor, was examined. THC resulted in increased phosphorylation of Nrf2 with consequent expression of HO-1 in a concentration-dependent manner. THC-induced phosphorylation of Nrf2 was blocked with SB203580, a p38 MAPK inhibitor, indicating that p38 MAPK is the responsible kinase for the phosphorylation of Nrf2. Taken together, the present study for the first time demonstrates that THC exerts anti-inflammatory properties through the activation of Nrf2 in BV2 microglial cells, suggesting that THC might be a valuable therapeutic adjuvant for the treatment of inflammation-related disorders in the CNS.

Anti-nociceptive effect of bee venom treatment on chronic arthritic pain in rats

  • Kwon, Young-bae;Lee, Jae-dong;Lee, Hye-jung;Han, Ho-jae;Lee, Jang-hern
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.4
    • /
    • pp.715-723
    • /
    • 1999
  • Bee venom (BV) has been traditionally applied to relieve pain and to cure inflammatory diseases such as rheumatoid arthritis (RA) and neuritis. While several investigators have evaluated the anti-inflammatory effect of BV treatment, the anti-nociceptive effect of BV treatment on inflammatory pain is not reported. Therefore, we decided to evaluate the analgesic effect of BV treatment using Freund's adjuvant induced chronic arthritis model. Freund's adjuvant-induced arthritis has been used as an experimental animal model for RA in humans to assess the efficacy of the anti-inflammatory/analgesic drugs. In this study, subcutaneous BV treatment (1mg/kg/day) produced significantly reductions of symptoms related to arthritic pain (i.e. mechanical hyperalgesia and thermal hyperalgesia). The anti-nociceptive effect of BV was observed from at least 12 days after BV treatment. Furthermore, BV treatment significantly suppressed adjuvant induced Fos expression in lumbar spinal cord. We also found that local injection of BV into near the inflammatory site (especially Zusanli-acupoint) showed more potent analgesic effect on arthritic pain rather than distant injection of BV from inflammatory site (arbitrary side of back). The present study demonstrates that BV treatment has anti-nociceptive effect on arthritis induced inflammatory pain. The analgesic effect of BV on RA is probably mediated by the effect of BV itself or possible other mechanism such as counter-irritation. Furthermore, it is possible that BV acupuncture is one of the promising candidates for long-term therapy of RA.

  • PDF

The Experimental Study on Anti-inflammation and Anti-oxidation of GaeYongHwan (개용환(改容丸)의 항염 및 항산화 효과에 대한 실험적 연구)

  • Seo, Hyeong-Sik
    • Journal of Pharmacopuncture
    • /
    • v.12 no.3
    • /
    • pp.73-79
    • /
    • 2009
  • Objectives : This study was performed to investigate the anti-inflammatory and anti-oxidantic effects of GaeYongHwan(GYH) extract which has been used for patients with acnes. Methods : Anti-inflammatory and anti-oxidantic effects of GYH extract were tested in terms of inhibitory ability of Nitric oxide(NO) production, 1,1-diphenyl-2-picrylhydrazyl(DPPH) radical scavenging activity and anti-bacterial effects against Propionibacterium acnes(P. acnes). Results : 1. All GYH treated groups did not show cytotoxicity. 2. Treatment with $100{\mu}g/m{\ell}$ of GYH extract lowered production levels of NO significantly compared to non-treated control or normal. 3. All of GYH treated groups did not show DPPH free radical scavenging activities. 4. All of GYH treated groups did not show anti-baterial action against P. acnes. Conclusions : These results imply that GYH extract has anti-inflammatory effect to treat acnes.

Effect of Bojeosodokeum on the Analgesic, Antipyretic, Anti-inflammatory, Antimicrobial and Anti-convulsive Actions (보제소독음(普濟消毒飮)의 진통(鎭痛), 해열(解熱), 소염(消炎), 항균(抗菌) 및 항경련(抗痙攣)에 대한 실험적(實驗的) 연구(硏究))

  • Hong Hyun-Jung;Lee Han-Cheul
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.9 no.1
    • /
    • pp.257-278
    • /
    • 1995
  • Experimental studies were done to research the clinical effect of Bojeosodokeum on the Analgesic, Antipyretic, Anti-inflammatory, Antimicrobial and Anti-convulsive effects in mice and rats. The results obtained as follows : 1. The solid extract powders of Bojeosodokeum was revealed significant action on analgesic effect. 2. the solid extract powders of Bojeosodokeum was revealed significant action on Anti-inflammatory effect. 3. The solid extract powders of Bojeosodokeum was revealed significant action on antipyretic effect. 4. Antimicrobial effects of solid extract powders of Bojeosodokeum against Escherichia coli and staphylococcus aureus was observed. 5. The solid extract powders of Bojeosodokeum was revealed significant action on anticonvulsive effect. According to the above results, it is confirmed that analgestic, anti-inflammatory, antipyretic, antimicrobial and anticonvulsive effect were recognized in solid extract powders of Bojeosodokeum.

  • PDF

Anti-Oxidative and Anti-inflammatory Effect of Combined Extract and Individual Extract of GamiSaengmaeksan (가미생맥산(加味生脈散) 및 개별약재의 항산화 및 항염증 효능에 대한 비교 연구)

  • Ji, Joong-Gu
    • The Korea Journal of Herbology
    • /
    • v.31 no.1
    • /
    • pp.69-75
    • /
    • 2016
  • Objectives : The aim of this study is to investigate the various effects of individual or combined extract of GamiSaengmaeksan (GSS) on cell viability, anti-inflammatory and antioxidant activityMethods : In order to evaluate cytotoxicity, MTT assay was performed. We investigated the levels of proinflammatory cytokines such as tumor necrosis factor (TNF)-α and interleukin (IL)-6 and interleukin (IL)-1β, and nitric oxide(NO) in LPS-induced RAW 264.7 cells to check the effects on anti-inflammatory activity. The level of NO production in RAW 264.7 cells was measured by using Griess reagent. The levels of cytokines and ROS were measured by Luminex and Flow cytometry, respectively.Results : At concentration of 200 ㎍/㎖ GSS, cytotoxicity was observed in RAW 264.7 cells. However, at concentration less than 100 ㎍/㎖ of both combine and individual GSS, cytotoxicity was not observed in Raw 264.7 cells. However, the level of ROS in RAW 264.7 cells were decreased at both extract of 100 ㎍/㎖ GSS. Also, the level of NO in RAW 264.7 cells were decreased from extraction of concentration of 100 ug/ml in GSS and individual-extraction of Liriopis Tuber, White Ginseng and Glycyrrhizae Radix. In addition, productions of pro-inflammatory cytokines (TNF-α) in LPS-induced RAW 264.7 cells were decreased from extraction of concentration of 10 and 100 (㎍/㎖) in GSS and individual-extraction of Liriopis Tuber.Conclusions : It is concluded that combined extract of GSS appears to be more effective in anti-oxidation and anti-inflammatory effect than those in individual-extraction of GSS. These results may be developed as a raw material for new therapeutics to ease the symptoms related with inflammatory and oxidative stress.