• Title/Summary/Keyword: anthraquinone disperse dyes

Search Result 8, Processing Time 0.018 seconds

Fixing Behaviors of Dimethylamino Anthraquinone Disperse Dyes and Monochlorotriazinyl Azo Reactive Dyes on P/C Blended Fabrics in One-Step Printing (디메틸아미노안트라퀴논계 분산염료와 아조계 모노클로로트리아진형 반응염료에 의한 P/C혼방직물의 일단계 날염에 있어 고착거동)

  • Park, Geon-Yong;Seo, Gi-Sung
    • Textile Coloration and Finishing
    • /
    • v.19 no.3
    • /
    • pp.18-25
    • /
    • 2007
  • The fixing behaviors of anthraquinone disperse dyes containing dimethylamino substituent, such as C. I. Disperse Violet 26(D.V.26) and C. I. Disperse Blue 14(D.V.14), or containing diamino substituent, such as C. I. Disperse Blue 73(D.B.73), and monochlorotriazinyl azo reactive dyes, such as C. I. Reactive Orange 13(R.O.13), C. I. Reactive Red 3(R.R.3). C. I. Reactive Yellow 2(R.Y.2) on polyester/cotton blend(P/C) fabrics were examined for the one-step printing of P/C fabrics. The high temperature steaming of $175^{\circ}C$ is the most satisfactory fixing method for P/C one-step printing with above disperse and reactive dyes among the four different fixing methods: $175^{\circ}C$ steaming, $102^{\circ}C$ steaming${\rightarrow}175^{\circ}C$ steaming, $190^{\circ}C$ thermosol, $102^{\circ}C$ steaming${\rightarrow}190^{\circ}C$ thermosol. $190^{\circ}C$ thermosol is unfit to fix R.R.3 and R.Y.2 whose heat stability is poor. It was found that D.V.26 and D.B.14 containing dimethylamino substituent are unstable for heat and alkali, but D.B.73 is stable for them to print P/C blend fabrics with R.O.13 which is also stable for heat. Therefore we found that D.B.73, R.O.13 and a pair of D.B.73 and R.O.13 were very suitable for one-step printing of P/C blend fabrics.

Printing of Polyester and Cotton Blends using Diaminoanthraquinone Disperse Dye and Monochlorotriazinyl Reactive Dye Mixtures (디아미노안트라퀴논계 분산염료/모노클로로트리진형 반응염료에 의한 폴리에스테르/면 혼방 직물의 날염)

  • 강숙녀
    • Textile Coloration and Finishing
    • /
    • v.6 no.2
    • /
    • pp.30-39
    • /
    • 1994
  • To study the printing behaviors of Polyester and cotton(P/C) fabrics printed with disperse and reactive dyes, the effects of alkalis on the fixation of reactive dyes and the alkali-stability of disperse dyes in various methods of fixation were examined. The anthraquinone disperse dyes which have diamino derivatives as substituents without hydroxy group, such as C.I. Disperse Violet 1(D.V.1), C.I. Disperse Violet 28(D.V.28) and C.I.Disperse Blue 60(D.B.60) showed good results of fixation without regard to the concentration of NaHCO$_3$. In case of high temperature steaming(HTS) and unsaturated steaming(US)/HTS, D.V. 1 was alkali-stable and effective for P/C printing. A good result was obtained with D.V.1 and C.I.Reactive Orange 13(R.O.13) paste of 4% $K_{2}CO_{3}$. It was found that the unfixed D.V.28 bearing chloro group can hinder the fixation of monochlorotriaxinyl reactive dyes, and D.B.60 made little stain on 100% cotton. In thermosol(Tm), the dye uptake of D.V.1 was not decreased so much, but those of D.V.28 and D.B.60 were greatly decreased.

  • PDF

Optimization of Anthraquinone Dyes Decolorization Conditions with Response Surface Methodology by Aspergillus

  • Ge, Yufeng;Wei, Bin;Wang, Siyu;Guo, Zhiguo;Xu, Xiaolin
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.327-332
    • /
    • 2015
  • A large amount of dye wastewater poses a threat to environmental safety. Disperse blue, an anthraquinone dye that is widely used in textile dyes, is difficult to degrade in wastewater. In this work, one fungus was screened according to the decolorization rate of disperse blue. The fungus was identified and named Aspergillus XJ-2 on the basis of its morphological characteristics and 18s rDNA. Response surface method was used to optimize culture conditions for A. XJ-2. The optimum values of obtained responses were as follows: temperature, $35^{\circ}C$; pH, 5.2; carbon-to-nitrogen ratio, 30:5.5; and rotation ratio, $175r{\cdot}min^{-1}$. Under optimized conditions, the decolorization rate of A. XJ-2 was up to 94.8% in 48 h.

Washing Fastness of Polyester Artificial Suede Fabric According to Reduction Clearing Method (환원세정방법에 따른 스웨드 직물의 세탁견뢰도)

  • 강연희;백진주;서말용;김삼수;허만우;이난형
    • Textile Coloration and Finishing
    • /
    • v.13 no.4
    • /
    • pp.234-240
    • /
    • 2001
  • In order to improve the washing fastness of dyed polyester artificial suede fabric, it was dyed by using auto and anthraguinone type disperse dyes and treated with 3 different reduction clearing methods. The reduction clearing methods used in this study were normal alkaline reduction clearing, $N_2$ gas replacement method, and ultrasonic treatment during normal reduction clearing. The results were as followings ; The washing fastness property of dyed polyester artificial suede fabric was slightly improved by reduction clearing with $N_2$ gas replacement or with ultrasonic treatment comparing with normal alkaline reduction clearing. It was found that the use of $N_2$ gas replacement or ultrasonic treatment during reduction clearing eave effective removal of unfixed dyes on the fiber surface. We also obtained that the azo type disperse dye on polyester artificial fabric suede fabric showed higher wash fastness than anthraquinone type disperse dye.

  • PDF

The dyeability and light fastness of amino azobenzene derivatives disperse dye( I ) (아미노 아조벤젠계 분산염료의 염색성 및 내광성(I))

  • Choi, Chang Nam;Lim, Seung Hee;Ryu, Hee Seok;Park, Hyung In;Hong, Sung Hak
    • Textile Coloration and Finishing
    • /
    • v.8 no.3
    • /
    • pp.24-30
    • /
    • 1996
  • In order to investigate the light fastness of amino azo disperse dyes, some kinds of disperse dyes were prepared and dyed to polyester fabric under the different conditions, such as single or mixture state. After the dyed fabric was irradiated with carbon arc light for several hours, the color differences and K/S values of fabric were measured. The light fastness of amino azo disperse dye was decreased by the introduction of OH group to the dye molecule. But when the amino azo dye was mixed with the anthraquinone disperse dye, the light fastness was increased. It was considered that the dye molecules were aggregated on account of hydrogen bonding via OH groups, resulting the decrease of surface area of dye molecule which might be irradiated by the light.

  • PDF

Dyeability of Low-melting Hybrid Polyester at Low Temperature (저융점 폴리에스테르 복합사의 저온 염색성)

  • Hwang, Ji-Hyun;Kim, Chang-Nam;Ma, Jin-Suk;Oh, Hae-Sun;Yoon, Nam-Sik
    • Textile Coloration and Finishing
    • /
    • v.24 no.2
    • /
    • pp.113-120
    • /
    • 2012
  • Jacquard floor covering could be prepared from low-melting/regular sheath-core hybrid polyester, where the fiber is dyed in yarn state. With regard that the expected high shrinkage of the hybrid polyester in water makes problems in yarn dyeing, low-temperature dyeing properties of the hybrid polyester were studied. The rate of shrinkage of low-melting hybrid polyester exceeds 9% in hot water above $90^{\circ}C$, at such condition, cheese yarn dyeing is very difficult. Although disperse dyes exhaust in a relatively high speed on low-melting hybrid polyester, diffusion of these dyes to the core regular polyester was extremely slow under $90^{\circ}C$. Foron Blue E-BL 150, an anthraquinone E-type disperse dye, showed appreciable diffusion after 48hrs dyeing at $90^{\circ}C$. The fastness to rubbing and drycleaning were improved by one grade after reduction cleaning.

Carrier Dyeing of Polyester Fabrics in Alkaline Dyebath (폴리에스테르직물의 알칼리욕에서의 Carrier염색)

  • 조은자;남성우;김인회
    • Textile Coloration and Finishing
    • /
    • v.13 no.6
    • /
    • pp.381-390
    • /
    • 2001
  • The optimum carrier concentrations were obtained by the maxmium exhaustion ratios of polyester fabrics at 8$0^{\circ}C$ . The optimum concentrations of methylsalicylate, acetophenone, anisole, propiophenone, 2-ethyl hexyl alcohol, ethylene glycol and propylene glycol were $3g/\ell,\;12g/\ell,\;7g/\ell,\;5g/\ell,\;3g/\ell,\;35g/\ell,\;and\;40g/\ell$, respectively Azo, anthraquinone, and quinoline disperse dyes were quite stable up to PH 10.3, but nitro disperse dye were severely hydrolyzed in alkaline dyeing. The tensile strength decreased with increasing dyebath pH because the polyester fabrics were easily decomposed by alkali. The reduction cleaning could be canceled in alkaline dyeing because the carriers were solved by alkali during dyeing.

  • PDF

Carrier Dyeing of Polyester Fabrics in Alkaline Dyebath (폴리에스테르직물의 알칼리욕에서의 Carrier염색)

  • Jo, Eun Ja;Nam, Seong U;Kim, In Hoe
    • Textile Coloration and Finishing
    • /
    • v.13 no.6
    • /
    • pp.23-23
    • /
    • 2001
  • The optimum carrier concentrations were obtained by the maxmium exhaustion ratios of polyester fabrics at 80℃. The optimum concentrations of methylsalicylate, acetophenone, anisole, propiophenone, 2-ethyl hexyl alcohol, ethylene glycol and propylene glycol were 3g/ℓ, 12g/ℓ, 7g/ℓ, 5g/ℓ, 3g/ℓ, 35g/ℓ, and 40g/ℓ, respectively. Azo, anthraquinone, and quinoline disperse dyes were quite stable up to pH 10.3, but nitro disperse dye were severely hydrolyzed in alkaline dyeing. The tensile strength decreased with increasing dyebath pH because the polyester fabrics were easily decomposed by alkali. The reduction cleaning could be canceled in alkaline dyeing because the carriers were solved by alkali during dyeing.