DOI QR코드

DOI QR Code

Optimization of Anthraquinone Dyes Decolorization Conditions with Response Surface Methodology by Aspergillus

  • Ge, Yufeng (College of Chemistry and Chemical Engineering, Shihezi University, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan) ;
  • Wei, Bin (College of Chemistry and Chemical Engineering, Shihezi University, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan) ;
  • Wang, Siyu (College of Chemistry and Chemical Engineering, Shihezi University, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan) ;
  • Guo, Zhiguo (College of Chemistry and Chemical Engineering, Shihezi University, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan) ;
  • Xu, Xiaolin (College of Chemistry and Chemical Engineering, Shihezi University, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan)
  • Received : 2014.07.15
  • Accepted : 2014.11.30
  • Published : 2015.06.01

Abstract

A large amount of dye wastewater poses a threat to environmental safety. Disperse blue, an anthraquinone dye that is widely used in textile dyes, is difficult to degrade in wastewater. In this work, one fungus was screened according to the decolorization rate of disperse blue. The fungus was identified and named Aspergillus XJ-2 on the basis of its morphological characteristics and 18s rDNA. Response surface method was used to optimize culture conditions for A. XJ-2. The optimum values of obtained responses were as follows: temperature, $35^{\circ}C$; pH, 5.2; carbon-to-nitrogen ratio, 30:5.5; and rotation ratio, $175r{\cdot}min^{-1}$. Under optimized conditions, the decolorization rate of A. XJ-2 was up to 94.8% in 48 h.

Keywords

References

  1. E. Sayan and M. E. Edecan, Ultrason. Sonochem., 15, 530 (2008). https://doi.org/10.1016/j.ultsonch.2007.07.009
  2. D. P. Garcia, J. C. Francisco and B. German, J. Hazard. Mater., 250, 462 (2013).
  3. G. Chen, M. H. Huang, L. Chen and D. H. Chen, Int. Biodeterior. Biodegrad., 65, 790 (2011). https://doi.org/10.1016/j.ibiod.2011.05.003
  4. R. G. Saratale, G. D. Saratale, J. S. Chang and S. P. Govindwar, J. Taiwan. Inst. Chem. Eng., 42, 57 (2011).
  5. S. Asad, M. A. Amoozegar, A. A. Pourbabaee, M. N. Sarbolouki and S. M. M. Dastgheib, Bioresour. Technol., 98, 2082 (2007). https://doi.org/10.1016/j.biortech.2006.08.020
  6. K. S. Rim, T. Mechichi, S. Sayadi and A. Dhouib, J. Microbiol., 50, 226 (2012). https://doi.org/10.1007/s12275-012-1421-1
  7. X. K. Zeng, Y. J. Cai, X. R. Liao, X. L. Zeng, S. P. Luo and D. B. Zhang, Process. Biochem., 47, 160 (2012). https://doi.org/10.1016/j.procbio.2011.10.019
  8. A. Srinivasan and V. Thiruvenkatachari, J. Environ. Manage., 91, 1915 (2010). https://doi.org/10.1016/j.jenvman.2010.05.003
  9. F. J. Deive, A. Dominguez, T. F. Barrio, Moscoso, P. Moran and M. A. Longo, J. Hazard. Mater., 182, 735 (2010). https://doi.org/10.1016/j.jhazmat.2010.06.096
  10. I. A. Alaton, I. Kabdasli, B. Vardar and O. Tunay, J. Hazard. Mater., 150, 166 (2008). https://doi.org/10.1016/j.jhazmat.2007.09.032
  11. M. Ozacar and I. A. Sengil, J. Hazard. Mater., 98, 211 (2003). https://doi.org/10.1016/S0304-3894(02)00358-8
  12. K. Papadopoulou, I. M. Kalagona, A. Philippoussis and F. Rigas, Int. Biodeterior. Biodegrad., 77, 31 (2013). https://doi.org/10.1016/j.ibiod.2012.10.008
  13. D. M. Cao, X. Xiao, Y. M. Wu, X. B. Ma, M. N. Wang, Y. Y. Wu and D. L. Du, Bioresour. Technol., 136,176 (2013). https://doi.org/10.1016/j.biortech.2013.02.083
  14. X. M. Meng, G. F. Liu, J. T. Zhou and Q. S. Fu, Bioresour. Technol., 151, 63 (2014). https://doi.org/10.1016/j.biortech.2013.09.131
  15. Y. Y. Qu, S. G. Shi, F. Ma and B. Yan, Bioresour. Technol., 101, 8016 (2010). https://doi.org/10.1016/j.biortech.2010.05.025
  16. Y. Y. Su, Y. F. Zhang, J. Wang, J. T. Zhou, X. B. Lu and H. Lu. Bioresour. Technol., 100, 2982 (2009). https://doi.org/10.1016/j.biortech.2009.01.029
  17. L. J. Zhao, J. T. Zhou, Y. H. Jia and J. F. Chen, J. Hazard. Mater., 181, 602 (2010). https://doi.org/10.1016/j.jhazmat.2010.05.055
  18. M. Karatas, Y. A. Argun and M. E. Argun, J. Ind. Eng. Chem., 18, 1058 (2012). https://doi.org/10.1016/j.jiec.2011.12.007
  19. M. Neifar, A. Jaouani, M. J. Martinez and M. J. Penninckx, J. Microbiol., 50, 746 (2012). https://doi.org/10.1007/s12275-012-2079-4
  20. A. R. Khataee, M. Zarei, M. Fathinia and M. Khobnasab Jafari, Desalination, 268, 126 (2011). https://doi.org/10.1016/j.desal.2010.10.008
  21. M. S. Ferhan, N. I. Santos, S. N. Melo and Y. M. Sain, World. J. Microb. Biot., 29, 2437 (2013). https://doi.org/10.1007/s11274-013-1398-x
  22. X. C. Jin and Y. Ning, J. Hazard. Mater., 26, 2870 (2013).

Cited by

  1. sp. XJ-2 CGMCC12963 vol.8, pp.5, 2017, https://doi.org/10.1080/21655979.2017.1300728
  2. Bioelectricity generation from the decolorization of reactive blue 19 by using microbial fuel cell vol.248, pp.None, 2015, https://doi.org/10.1016/j.jenvman.2019.109310