• Title/Summary/Keyword: anthracis

Search Result 69, Processing Time 0.035 seconds

Characterization of Bacillus anthracis proteases through protein-protein interaction: an in silico study of anthrax pathogenicity

  • Banerjee, Amrita;Pal, Shilpee;Paul, Tanmay;Mondal, Keshab Chandra;Pati, Bikash Ranjan;Sen, Arnab;Mohapatra, Pradeep Kumar Das
    • CELLMED
    • /
    • v.4 no.1
    • /
    • pp.6.1-6.12
    • /
    • 2014
  • Anthrax is the deadly disease for human being caused by Bacillus anthracis. Instantaneous research work on the mode of infection of the organism revealed that different proteases are involved in different steps of pathogenesis. Present study reports the in silico characterization and the detection of pathogenic proteases involved in anthrax infection through protein-protein interaction. A total of 13 acid, 9 neutral, and 1 alkaline protease of Bacillus anthracis were selected for analysing the physicochemical parameter, the protein superfamily and family search, multiple sequence alignment, phylogenetic tree construction, protein-protein interactions and motif finding. Among the 13 acid proteases, 10 were found as extracellular enzymes that interact with immune inhibitor A (InhA) and help the organism to cross the blood brain barrier during the process of infection. Multiple sequence alignment of above acid proteases revealed the position 368, 489, and 498-contained 100% conserved amino acids which could be used to deactivate the protease. Among the groups analyzed, only acid protease were found to interact with InhA, which indicated that metalloproteases of acid protease group have the capability to develop pathogenesis during B. anthracis infection. Deactivation of conserved amino acid position of germination protease can stop the sporulation and germination of B anthracis cell. The detailed interaction study of neutral and alkaline proteases could also be helpful to design the interaction network for the better understanding of anthrax disease.

Discrimination of Bacillus anthracis Spores by Direct in-situ Analysis of Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry

  • Jeong, Young-Su;Lee, Jonghee;Kim, Seong-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2635-2639
    • /
    • 2013
  • The rapid and accurate identification of biological agents is a critical step in the case of bio-terror and biological warfare attacks. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has been widely used for the identification of microorganisms. In this study, we describe a method for the rapid and accurate discrimination of Bacillus anthracis spores using MALDI-TOF MS. Our direct in-situ analysis of MALDI-TOF MS does not involve subsequent high-resolution mass analyses and sample preparation steps. This method allowed the detection of species-specific biomarkers from each Bacillus spores. Especially, B. anthracis spores had specific biomarker peaks at 2503, 3089, 3376, 6684, 6698, 6753, and 6840 m/z. Cluster and PCA analyses of the mass spectra of Bacillus spores revealed distinctively separated clusters and within-groups similarity. Therefore, we believe that this method is effective in the real-time identification of biological warfare agents such as B. anthracis as well as other microorganisms in the field.

A Study on the Validation system of Detection for Biological Agents Using Real-Time PCR (실시간 중합효소 연쇄반응을 활용한 생물작용제 검증시스템 연구)

  • Cha, Younggil;Koo, Bonwoo;Kim, Seongjoo;Kim, Namil;Park, Hanoh
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.726-732
    • /
    • 2017
  • Bacillus anthracis, Vibrio cholerae, Variola virus and Shigella dysenteriae are classified as category A and B biological weapons. In this study suggest that 4 genes of Bacillus anthracis, 2 genes of Vibrio cholerae, 1 gene of Variola virus and 1 gene of Shigella dysenteriae were detective 50~500 fg of target DNA per reaction using real-time PCR based assay. Also analytical specificity did not show any cross-reactivity with other related bacteria. Reliable and one reaction could be effective early diagnostic and treatment for detection of unknown samples.

Curing Both Virulent Mega-Plasmids from Bacillus anthracis Wild-Type Strain A16 Simultaneously Using Plasmid Incompatibility

  • Wang, Dongshu;Gao, Zhiqi;Wang, Huagui;Feng, Erling;Zhu, Li;Liu, Xiankai;Wang, Hengliang
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.10
    • /
    • pp.1614-1620
    • /
    • 2015
  • Plasmid-cured derivative strains of Bacillus anthracis are frequently used in laboratory studies. Plasmid incompatibility, which does not increase the risk of chromosomal mutation, is a useful method for plasmid curing. However, in bacteria containing multiple plasmids, it often requires the sequential introduction of multiple, specific incompatibility plasmids. This lengthy process renders the traditional plasmid incompatibility method inefficient and mutation-prone. In this study, we successfully cured plasmids pXO1 and pXO2 from B. anthracis A16 simultaneously using only one recombinant incompatible plasmid, pKORT, to obtain a plasmid-free strain, designated A16DD. This method may also be useful for the simultaneous, one-step curing of multiple plasmids from other bacteria, including Bacillus thuringiensis and Yersinia pestis.

The Poly-γ-ᴅ-Glutamic Acid Capsule of Bacillus licheniformis, a Surrogate of Bacillus anthracis Capsule Induces Interferon-Gamma Production in NK Cells through Interactions with Macrophages

  • Lee, Hae-Ri;Jeon, Jun Ho;Rhie, Gi-Eun
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.5
    • /
    • pp.1032-1037
    • /
    • 2017
  • The poly-${\gamma}$-$\small{D}$-glutamic acid (PGA) capsule, a major virulence factor of Bacillus anthracis, provides protection of the bacterium from phagocytosis and allows its unimpeded growth in the host. We investigated crosstalk between murine natural killer (NK) cells and macrophages stimulated with the PGA capsule of Bacillus licheniformis, a surrogate of the B. anthracis capsule. PGA induced interferon-gamma production from NK cells cultured with macrophages. This effect was dependent on macrophage-derived IL-12 and cell-cell contact interaction with macrophages through NK cell receptor NKG2D and its ligand RAE-1. The results showed that PGA could enhance NK cell activation by inducing IL-12 production in macrophages and a contact-dependent crosstalk with macrophages.

Production of nitric oxide, interleukin-6 and tumor necrosis factor α from mouse peritoneal macrophages in response to Bacillus anthracis antigens

  • Yoo, Han-sang;Kim, Jae-wook;Cho, Yun-sang
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.2
    • /
    • pp.301-310
    • /
    • 1999
  • Anthrax caused by Bacillus anthracis is one of the most important zoonotic diseases. The bacterium produces several virulence factors. Of the factors, protective antigen (PA) of tripatite toxin has been identified as a central component in the pathogenesis of anthrax. However, precise roles of PA and other cellular components in the reaction with the target cells remain to be elucidated, especially in the initial stage of the disease. Three B anthracis antigens were prepared for investigation; PA, sonicated cellular antigens (S-Ag) and formalin-inactivaed whole cell antigens (W-Ag). PA was purified from culture supernatant of the bacterium using FPLC system with MonoQ. S-Ag and W-Ag were prepared by sonication and formalin inactivation of the cultured cells, respectively. Purity of the antigens was confirmed by SDS-PAGE and Western blot analysis. The roles of these antigens in the production of inflammatory mediators such as NO, IL-6 and $TNF{\alpha}$ from mouse peritoneal macrophages were investigated. PA alone did not induce the production of the inflammatory mediators while the other antigens, S-Ag and W-Ag, did in a dose and time dependent manner. These results suggested that in addition to major virulence factors, other cellular antigens are also involved in the initial stage of the disease by the induction of inflammatory mediators.

  • PDF

Construction of the Genomic Expression Library of Bacillus anthracis for the Immunomic Analysis (면역체 분석을 위한 탄저균 유전자 발현 라이브러리의 구축)

  • Park, Moon-Kyoo;Jung, Kyoung-Hwa;Kim, Yeon-Hee;Rhie, Gi-Eun;Chai, Young-Gyu;Yoon, Jang-W.
    • Korean Journal of Microbiology
    • /
    • v.46 no.1
    • /
    • pp.21-26
    • /
    • 2010
  • As the causative agent of Anthrax, Bacillus anthracis causes an acute fatal disease in herbivores such as cattle, sheep, and horses as well as humans. The therapeutics and prevention of anthrax currently available are based on antibiotics and the live attenuated vaccine strains, which may be problematic due to the emergency of antibiotic resistant strains or residual virulence in those vaccine strains. Therefore, it has been required to develop novel therapeutics and vaccines which are safer and applicable to humans. Recently, the development of the multivalent vaccine targeting both spores and vegetative cells of B. anthracis along with anthrax toxin has been reported. In our attempts to screen potential candidates for those multivalent vaccines, the whole genomic expression library of B. anthracis was constructed in this study. To the end, the partial digests of the genomic DNA from B. anthracis (ATCC 14578) with Sau3AI were ligated with the inducible pET30abc expression vectors, resulting in approximately $1{\times}10^5$ clones in E. coli BL21(DE3). The redundancy test by DNA nucleotide sequencing was performed for the randomly selected 111 clones and found 56 (50.5%) B. anthracis genes, 17 (15.3%) vector sequences, and 38 (34.2%) unknown genes with no sequence homology by BLAST. An inducible expression of the recombinant proteins was confirmed by Western blot. Interestingly, some clones could react with the antiserum against B. anthracis. These results imply that the whole genomic library constructed in this study can be applied for analyzing the immunomes of B. anthracis.

A Macrolide-Lincosamide-Streptogramin B Resistance Determinant Gene (ermJ) Cloned from B, anthracis 590

  • Kim, Hee-Sun;Choi, Eung-Chil;Kim, Byong-Kak;Park, Young-In
    • Archives of Pharmacal Research
    • /
    • v.15 no.1
    • /
    • pp.58-61
    • /
    • 1992
  • Bacillus anthracis 590 having an inducibla resistance determinant to MLS antibiotics was isolated from a soli sample in Korea. The resistance gene (ernJ) was cloned by Southern blotting of chromosomal DNA fragment digested by various restriction enzymes and coloy hybridization method and the cloned plasmid was named as pBA423. The size of inserted DNA fragment of pBS42 vector was about 2.9 kb and the DNA sequence of the subcloned fragment (Hinc II-Hinc II, 1.4kb) WAS determined. The DNA sequence of ernJ was composed of 357 bp for leader region and 861 bp for the structural gene. Because the leader sequence of ernJ was homologous to that of ermK, the expression of ernJ is also thought to be controlled by a transcriptionl attenuation mechanism.

  • PDF

Screening and Identification of a Cesium-tolerant Strain of Bacteria for Cesium Biosorption (환경유래의 세슘 저항성 균주 선별 및 세슘 흡착제거 연구)

  • Kim, Gi Yong;Jang, Sung-Chan;Song, Young Ho;Lee, Chang-Soo;Huh, Yun Suk;Roh, Changhyun
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.4
    • /
    • pp.304-313
    • /
    • 2016
  • One of the issues currently facing nuclear power plants is how to store spent nuclear waste materials which are contaminated with radionuclides such as $^{134}Cs$, $^{135}Cs$, and $^{137}Cs$. Bioremediation processes may offer a potent method of cleaning up radioactive cesium. However, there have only been limited reports on $Cs^+$ tolerant bacteria. In this study, we report the isolation and identification of $Cs^+$ tolerant bacteria in environmental soil and sediment. The resistant $Cs^+$ isolates were screened from enrichment cultures in R2A medium supplemented with 100 mM CsCl for 72 h, followed by microbial community analysis based on sequencing analysis from 16S rRNA gene clone libraries(NCBI's BlastN). The dominant Bacillus anthracis Roh-1 and B. cereus Roh-2 were successfully isolated from the cesium enrichment culture. Importantly, B. cereus Roh-2 is resistant to 30% more $Cs^+$ than is B. anthracis Roh-1 when treated with 50 mM CsCl. Growth experiments clearly demonstrated that the isolate had a higher tolerance to $Cs^+$. In addition, we investigated the adsorption of $0.2mg\;L^{-1}$ $Cs^+$ using B. anthracis Roh-1. The maximum $Cs^+$ biosorption capacity of B. anthracis Roh-1 was $2.01mg\;g^{-1}$ at pH 10. Thus, we show that $Cs^+$ tolerant bacterial isolates could be used for bioremediation of contaminated environments.

Microbial Forensics: Comparison of MLVA Results According to NGS Methods, and Forensic DNA Analysis Using MLVA (미생물법의학: 차세대염기서열분석 방법에 따른 MLVA 결과 비교 및 이를 활용한 DNA 감식)

  • Hyeongseok Yun;Seungho Lee;Seunghyun Lim;Daesang Lee;Sehun Gu;Jungeun Kim;Juhwan Jeong;Seongjoo Kim;Gyeunghaeng Hur;Donghyun Song
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.507-515
    • /
    • 2024
  • Microbial forensics is a scientific discipline for analyzing evidence related to biological crimes by identifying the origin of microorganisms. Multiple locus variable number tandem repeat analysis(MLVA) is one of the microbiological analysis methods used to specify subtypes within a species based on the number of tandem repeat in the genome, and advances in next generation sequencing(NGS) technology have enabled in silico anlysis of full-length whole genome sequences. In this paper, we analyzed unknown samples provided by Robert Koch Institute(RKI) through The United Nations Secretary-General's Mechanism(UNSGM)'s external quality assessment exercise(EQAE) project, which we officially participated in 2023. We confirmed that the 3 unknown samples were B. anthracis through nucleic acid isolation and genetic sequence analysis studies. MLVA results on 32 loci of B. anthracis were analysed by using genome sequences obtained from NGS(NextSeq and MinION) and Sanger sequencing. The MLVA typing using short-reads based NGS platform(NextSeq) showed a high probability of causing assembly error when a size of the tandem repeats was grater than 200 bp, while long-reads based NGS platform(MinION) showed higher accuracy than NextSeq, although insertion and deletion was observed. We also showed hybrid assembly can correct most indel error caused by MinION. Based on the MLVA results, genetic identification was performed compared to the 2,975 published MLVA databases of B. anthracis, and MLVA results of 10 strains were identical with 3 unkonwn samples. As a result of whole genome alignment of the 10 strains and 3 unknown samples, all samples were identified as B. anthracis strain A4564 which is associated with injectional anthrax isolates in heroin users.