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Bacillus anthracis, the causative agent of anthrax, is a

gram-positive, spore-forming bacterium, and is classified

as a tier 1 select agent by the US Centers for Disease

Control and Prevention [1, 2]. B. anthracis secretes exotoxins,

edema toxin and lethal toxin, which cause edema or cell

death during anthrax infection [3]. In addition to these two

exotoxins, another virulence factor of B. anthracis is the

capsule, which is composed of poly-γ-D-glutamic acid

(PGA) and protects the bacterium from phagocytosis by the

immune cells [4]. 

Natural killer (NK) cells are important immune effectors

for preventing microbial invasion and dissemination. They

perform a first line of defense against microbial invasion,

through cytotoxicity and cytokine secretion [5]. Activation

of NK cells during infection requires interactions with

accessory cells, such as monocytes, macrophages, and

dendritic cells. Accessory cell signals for NK cell activation

include both cytokines, such as IL-12 and IL-18, and cell-to-

cell physical contact, as indirect and direct signals,

respectively [6]. 

Interferons (IFNs) secreted by NK cells play an important

role in host defense against infections [7]. Type I (IFN-α

and IFN-β) and Type II IFNs (IFN-γ) are prominent members

of the host innate immune response to intracellular

pathogens such as Mycobacterium tuberculosis [8] and

Francisella tularensis [9]. In the case of anthrax, B. anthracis

spores have been reported to efficiently drive IFN-γ

production in NK cells [10]. IFNs protect mice against

inhalational anthrax [11] and improve the viability of

human macrophages from cell death by B. anthracis [12].

Accumulating studies have reported that NK cells-derived

IFN-γ plays a pivotal role in protection against anthrax

infection [10, 11]. However, whether PGA capsule can elicit

protective immunity by inducing NK cells activation to

produce IFN-γ has not been investigated yet. We used PGA

from Bacillus licheniformis as a surrogate for B. anthracis

PGA capsule, since B. licheniformis is a non-pathogenic

bacterium which can be treated in a biosafety level 1

facility and it is able to produce high levels of PGA with

D-enantiomer [14]. Thus, many researchers have used
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The poly-γ-D-glutamic acid (PGA) capsule, a major virulence factor of Bacillus anthracis,

provides protection of the bacterium from phagocytosis and allows its unimpeded growth in

the host. We investigated crosstalk between murine natural killer (NK) cells and macrophages

stimulated with the PGA capsule of Bacillus licheniformis, a surrogate of the B. anthracis

capsule. PGA induced interferon-gamma production from NK cells cultured with

macrophages. This effect was dependent on macrophage-derived IL-12 and cell-cell contact

interaction with macrophages through NK cell receptor NKG2D and its ligand RAE-1. The

results showed that PGA could enhance NK cell activation by inducing IL-12 production in

macrophages and a contact-dependent crosstalk with macrophages. 
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B. licheniformis PGA as a surrogate for B. anthracis PGA

including ours [13, 15-19]. In this study, we sought to

investigate whether the PGA capsule of B. licheniformis, a

surrogate of the B. anthracis capsule, can induce IFN-γ,

and further examined underlying molecular mechanisms

involved.

Experiments using animals were conducted according to

the protocols (KCDC-007-13-1A) approved by the Institutional

Animal Care and Use Committee of the Korea National

Institute of Health. For cell preparation, 6- to 10-week-old

female C57BL/6 mice were purchased from Central Lab.

Animal Inc. (Korea). Splenocytes were prepared by disruption

with a cell strainer (BD Biosciences, USA) and bone marrow

cells were isolated from femora of mice in Dulbecco’s

modified Eagle’s medium containing 10% fetal bovine

serum (Invitrogen, USA) and antibiotics (Invitrogen, USA).

Bone marrow-derived macrophages (BMDMs) were prepared

as described previously [13]. NK cells from splenocytes

were purified using the NK cell isolation kit II (Miltenyi

Biotec Inc., USA) according to the manufacturer’s protocol.

Non-NK cells were used as NK-depleted cells. The purity

of NK cells was determined to be more than 90% by flow

cytometry. Cell activation was performed by incubating

5 × 106 splenocytes, 5 × 106 NK-depleted splenocytes, 5 × 105

BMDMs, or 5 × 106 purified NK cells with or without

5 × 105 BMDMs in the presence of 100 μg/ml PGA in 96-

well plates.

For PGA preparation, B. licheniformis ATCC 9945a was

grown in E medium, which contained L-glutamic acid 20 g,

citric acid 12 g, glycerol 80 g, NH4Cl 7 g, K2HPO4 0.5 g,

MgSO4·7H2O 0.5 g, FeCl3·6H2O 0.04 g, CaCl2·2H2O 0.15 g,

and MnSO4·H2O 0.104 g per liter to maximize the

production of D-glutamate capsule [14]. Usually, under

these condition, B. licheniformis ATCC 9945a produces PGA

with approximately 80-90% D-enantiomer [14]. PGA was

purified from the culture supernatant as described previously

[15]. The purity and structure of PGA were verified by 1H

nuclear magnetic resonance spectroscopy.

Concentrations of mouse IFN-γ and IL-12 p70 were

measured by enzyme-linked immunosorbent assay (ELISA)

using commercially available ELISA kits (BioLegend,

USA) according to the manufacturer’s instructions. For

immunofluorescence microscopy, splenocytes were seeded

onto a chamber slide (Nalge Nunc, USA) and then the cells

were stimulated with 250 μg/ml PGA for 3 h. The cells

were then stained with Alexa Fluor 647-conjugated anti-

NK 1.1 antibody (BioLegend, USA) and FITC-conjugated

anti-IFN-γ antibody (eBioscience, USA). Samples were

analyzed using an FV1000 confocal microscope (Olympus,

Japan). Detailed procedures for immunofluorescence

microscopy were described previously [13]. 

For IL-12 blocking experiments, NK cells co-cultured

with BMDMs or splenocytes were treated with anti-IL-12

antibody (2.5 μg/ml; BD Biosciences) or its isotype control

(2.5 μg/ml; BD Biosciences). In some experiments, NK cell

activation was conducted in 96-well transwell plates (8 μm

pore diameter; Corning Life Sciences, USA). BMDMs (5 ×

105 cells/well) were seeded into the lower chamber and NK

cells (5 × 106 cells/well) were placed into the upper

chamber followed by stimulation with 100 μg/ml PGA for

48 h. For receptor function blocking experiments, NK cells

co-cultured with BMDMs were pretreated with anti-NKG2D

antibody (5 μg/ml, BioLegend, USA), anti-RAE-1 antibody

(5 μg/ml, BioLegend, USA), or their isotype control (5 μg/ml,

BioLegend, USA). Statistical analyses were performed

using GraphPad Prism 6 software (GraphPad Software,

Fig. 1. Poly-γ-D-glutamic acid (PGA) induces IFN-γ production

in murine NK cells. 

(A) Splenocytes (SPL), NK-depleted SPL, bone marrow-derived

macrophages (BMDMs), and purified NK cells with or without

BMDMs were stimulated with 100 μg/ml PGA for 48 h. Levels of

IFN-γ in culture supernatants were measured by ELISA. *, p < 0.05,

compared with the untreated control group. ND, not detected. (B)

SPL were left untreated (-) or treated (PGA) with 250 μg/ml PGA for

3 h and then stained with Alexa Fluor 647-conjugated anti-NK 1.1 and

FITC-conjugated anti-IFN-γ antibodies. Fluorescence images were

obtained by confocal microscopy.
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USA). The mean value and standard deviation were obtained

from triplicate samples for each treatment group. Statistical

significance was examined using the t-test. Differences

were considered significant when the p value was <0.05.

To examine whether PGA capsules can induce IFN-γ

production in murine splenocytes, the cells were stimulated

with 100 μg/ml PGA for 48 h, and then the IFN-γ

concentration was measured by ELISA. As shown in

Fig. 1A, PGA significantly augmented IFN-γ production

compared with the level in untreated cells. Since the NK

cell has been reported as the main producer of IFN-γ

[20-22], we examined whether NK-depleted splenocytes

retain the ability to produce IFN-γ in response to PGA

stimulation. As shown in Fig. 1A, the PGA-induced IFN-γ

production from splenocytes was significantly reduced in

NK-depleted cells (p = 0.009). Because it has been known

that interactions between NK cells and macrophages are

important for IFN-γ production in response to bacterial

infection [22, 23], we investigated whether PGA can induce

IFN-γ production in BMDMs alone or in purified NK cells

with or without BMDMs. PGA induced IFN-γ production

in NK cells but not in BMDMs. However, the PGA-induced

IFN-γ production from NK cells was significantly augmented

when the cells were co-cultured with BMDMs (Fig. 1A). To

further confirm whether NK cells are the main source of

IFN-γ produced in PGA-stimulated splenocytes, we examined

the expression of IFN-γ in response to PGA by confocal

microscopy analysis. As shown in Fig. 1B, PGA induced

IFN-γ expression in NK 1.1-positive NK cells only. These

results indicate that NK cells are the main producer of IFN-γ

in PGA-stimulated splenocytes. 

It has been known that IFN-γ production by NK cells

requires cytokines and contact-dependent receptor signals

by accessory cells such as macrophages [6, 22-24]. In

addition, macrophage-secreted IL-12 has been known to

play a key role in B. anthracis-induced IFN-γ production by

NK cells [10]. Thus, we first examined whether PGA can

induce IL-12 production in splenocytes and BMDMs. As

shown in Fig. 2A, PGA significantly induced IL-12

production both in splenocytes and BMDMs compared with

unstimulated cells. To evaluate the role of macrophage-

secreted IL-12 in regulating PGA-induced IFN-γ production

by NK cells, purified NK cells with BMDMs (Fig. 2B) and

splenocytes (Fig. 2C) were incubated with isotype control

IgG or anti-IL-12 neutralizing antibody. The IFN-γ production

by PGA was significantly reduced by addition of anti-IL-12

neutralizing antibody both in NK cells with BMDMs and

splenocytes, whereas these inhibitory effects were not

observed in control IgG-treated cells. Taken together, these

results indicate that PGA induction of IL-12 secretion in

macrophages plays a pivotal role in IFN-γ production by

NK cells. Next, to investigate whether cell-cell contact

between NK cells and macrophages is involved in PGA-

induced IFN-γ production, we used conditioned medium

from PGA-stimulated BMDMs and transwells to prevent

direct cellular interactions between the NK cells and

macrophages. As shown in Fig. 3A, conditioned medium

Fig. 2. IL-12 secreted by poly-γ-D-glutamic acid (PGA)

stimulated macrophages is involved in NK cell activation to

produce IFN-γ. 

(A) Splenocytes (SPL) and bone marrow-derived macrophages

(BMDMs) were stimulated with 100 μg/ml PGA for 48 h. IL-12 p70

concentrations were determined by ELISA. NK cells with BMDMs (B)

or SPL (C) were pretreated with anti-IL-12 neutralizing antibody

(2.5 μg/ml) or control IgG (2.5 μg/ml) for 1 h, followed by stimulation

with 100 μg/ml PGA for an additional 48 h. IFN-γ concentrations

were measured by ELISA. *, p < 0.05. NS, not significant.
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from PGA-stimulated BMDMs did not induce IFN-γ

production in the NK cells, and PGA-induced IFN-γ

production was almost completely impaired by preventing

NK cells-macrophages contact using transwells. The NK

activating receptor, NKG2D, has been known to play a key

role in IFN-γ production in NK cells [25, 26]. Thus, we

examined whether the NKG2D receptor is involved in IFN-γ

production through the interactions between NK cells

and PGA-stimulated BMDMs. Pretreatment of NKG2D

neutralizing antibody partially abrogated the PGA-induced

IFN-γ production by 55% (p = 0.01). Furthermore, neutralizing

antibody for RAE-1, one of the NKG2D ligands, also

decreased IFN-γ production by 57% (p = 0.01, Fig. 3B).

These results indicate that PGA-induced activation of NK

cells and following IFN-γ production are dependent on

cell-to-cell contact interaction with macrophages through

NK cell receptor NKG2D and its ligand RAE-1.

In the present study, we examined NK cell activation

through crosstalk between NK cells and macrophages

stimulated with PGA. We found that interaction between

macrophages and NK cells through NKG2D-RAE-1 as well

as IL-12 secreted by activated macrophages was required

for PGA-induced IFN-γ production. However, it has been

reported that not only soluble factors (including IL-18,

IL-15, and type I IFNs) but also another NK-activating

receptors (including NKp30 and NKp46) are also involved

in IFN-γ production by NK cells [20, 22]. Thus, further study

is needed to identify whether these cytokines or receptors

are involved in PGA-induced activation of NK cells. In our

experiments, we used B. licheniformis PGA as a surrogate

for B. anthracis capsule to examine the IFN-γ stimulatory

activity of PGA. It has been known that B. anthracis capsule

made up of only D-glutamate was first polymerized on the

surface to the high molecular weight polymer molecules

(>100 kDa) and then capsule depolymerase degraded the

capsule to the lower-molecular mass capsule (<50 kDa),

releasing from the cell surface [27]. Thus, we maximized

B. licheniformis to produce D-glutamate capsule using E

medium and the PGA purified from B. licheniformis was

then fragmented to the molecular mass of <50 kDa by acid

hydrolysis. In addition, B. licheniformis PGA has been used

as a surrogate of B. anthracis PGA for development of

vaccine [16], therapeutic antibodies [17], and diagnostic

assay [18]. Thus, our results using B. licheniformis PGA

would be applicable to studies on B. anthracis.

It has been known that NK cells are a main producer of

IFN-γ and play a significant role in host defense to bacterial

infection [28]. However, a detrimental role of NK cells in

bacterial immunity has also been reported. In fact, depletion

of NK cells in scid mice reduced bacteremia and inflammatory

cytokine responses in a Streptococcus pneumoniae infection

model [29]. Depletion of NK cells led to enhanced splenic

bacterial clearance in Pseudomonas aeruginosa-infected mice

[30]. NK cell depletion improved the survival rate in

Escherichia coli-infected mice [31]. In late-stage anthrax,

B. anthracis has been known to reach 107
-108 organisms per

milliliter of blood, inducing high amount of cytokines in an

experimental animal model [32, 33]. Moreover, a sepsis

model has been proposed as an emerging hypothesis for

the lethality of anthrax [34]. IFN-γ is associated with

various inflammatory diseases such as sepsis [35]. In fact,

exogenous IFN-γ increased mortality in mice with inhalation

anthrax [36]. Therefore, NK cells might be involved in

severe inflammatory responses to B. anthracis infection by

overproducing IFN-γ. Further study will be required to

elucidate the role of IFN-γ secretion by PGA on anthrax

Fig. 3. NK cell activation by poly-γ-D-glutamic acid (PGA) requires cell contact-dependent co-stimulation by macrophages. 

(A) Purified NK cells with bone marrow-derived macrophages (BMDMs) were stimulated with 100 μg/ml PGA for 48 h in the different conditions

as indicated. (B) Purified NK cells with BMDMs were pretreated with control IgG, anti-NKG2D (5 μg/ml), or anti-RAE1 (5 μg/ml) neutralizing

antibodies for 1 h and then the cells were stimulated with 100 μg/ml PGA for 48 h. IFN-γ concentrations in the culture supernatants were determined

by ELISA. *, p < 0.05. NS, not significant.
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pathogenesis.

To the best of our knowledge, our current study is the

first to demonstrate that the PGA-induced IFN-γ production

is dependent on IL-12 produced by PGA-activated

macrophages and cell-cell contact interaction between NK

cells and macrophages through NKG2D-RAE-1. 
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