• 제목/요약/키워드: antenna gain

검색결과 1,490건 처리시간 0.023초

The Gain Estimation of a Fabry-Perot Cavity (FPC) Antenna with a Finite Dimension

  • Kwon, Taek-Sun;Lee, Jae-Gon;Lee, Jeong-Hae
    • Journal of electromagnetic engineering and science
    • /
    • 제17권4호
    • /
    • pp.241-243
    • /
    • 2017
  • In this paper, we have presented an equation for estimating the gain of a Fabry-Perot cavity (FPC) antenna with a finite dimension. When an FPC antenna has an infinite dimension and its height is half of a wavelength, the maximum gain of that FPC antenna can be obtained theoretically. If the FPC antenna does not have a dimension sufficient for multiple reflections between a partially reflective surface (PRS) and the ground, its gain must be less than that of an FPC antenna that has an infinite dimension. In addition, the gain of an FPC antenna increases as the dimension of a PRS increases and becomes saturated from a specific dimension. The specific dimension where the gain starts to saturate also gets larger as the reflection magnitude of the PRS becomes closer to one. Thus, it would be convenient to have a gain equation when considering the dimension of an FPC antenna in order to estimate the exact gain of the FPC antenna with a specific dimension. A gain versus the dimension of the FPC antenna for various reflection magnitudes of PRS has been simulated, and the modified gain equation is produced through the curve fitting of the full-wave simulation results. The resulting empirical gain equation of an FPC antenna whose PRS dimension is larger than $1.5{\lambda}_0$ has been obtained.

혼안테나를 결합한 고 이득 도파관 배열 안테나 설계 (The Design of High Gain Waveguide Array Antenna Combining Horn Antenna)

  • 이한영
    • 전기학회논문지
    • /
    • 제63권2호
    • /
    • pp.257-260
    • /
    • 2014
  • In this paper, a high gain waveguide array antenna combining horn antenna on slot radiator was designed. And the fabricated antenna showed enough gain, improved efficiency and broadband characteristics for receiving satellite signals, compare to conventional microstrip antenna which has dielectric loss and radiation loss on transmission line. For easy fabrication, the waveguide structure was composed by 3-stages of radiator, signal coupler and transmission line. By experiment, the array waveguide antenna of 4 by 16 showed 28.3[dBi] gain and 2:1 of VSWR. And by combining horn antenna structure, the gain was increased 1[dB]. The received signal from Koreasat 6 by measurement showed 16[dBc] of C/N on BS(Broadcasting Satellite)-band and 14[dBc] of C/N on CS(Communication Satellite)-band.

Design for High Gain Spiral Antenna by Added Conical Cavity Wall

  • Jeong, Jae-Hwan;Min, Kyeong-Sik;Kim, In-Hwan
    • Journal of electromagnetic engineering and science
    • /
    • 제13권3호
    • /
    • pp.165-172
    • /
    • 2013
  • This paper describes a design for a spiral antenna with a conical wall to obtain the high gain. The gain and the axial ratio of the spiral antenna were improved by a new design that included a conical wall and an optimized Archimedean slit on the ground plane in a conventional antenna with a circular cavity wall and a 4.5-turn slit. A gain improvement of 9.5 dBi higher and a good axial ratio of 1.9 dB lower were measured by the added conical wall and the newly designed slit from the current distribution control on the ground plane, respectively. The measured return loss, gain and axial ratio of the proposed antenna showed a good agreement with the simulated results. The proposed antenna will be applied to a non-linear junction detector system.

Performance of a Planar Leaky-Wave Slit Antenna for Different Values of Substrate Thickness

  • Hussain, Niamat;Kedze, Kam Eucharist;Park, Ikmo
    • Journal of electromagnetic engineering and science
    • /
    • 제17권4호
    • /
    • pp.202-207
    • /
    • 2017
  • This paper presents the performance of a planar, low-profile, and wide-gain-bandwidth leaky-wave slit antenna in different thickness values of high-permittivity gallium arsenide substrates at terahertz frequencies. The proposed antenna designs consisted of a periodic array of $5{\times}5$ metallic square patches and a planar feeding structure. The patch array was printed on the top side of the substrate, and the feeding structure, which is an open-ended leaky-wave slot line, was etched on the bottom side of the substrate. The antenna performed as a Fabry-Perot cavity antenna at high thickness levels ($H=160{\mu}m$ and $H=80{\mu}m$), thus exhibiting high gain but a narrow gain bandwidth. At low thickness levels ($H=40{\mu}m$ and $H=20{\mu}m$), it performed as a metasurface antenna and showed wide-gain-bandwidth characteristics with a low gain value. Aside from the advantage of achieving useful characteristics for different antennas by just changing the substrate thickness, the proposed antenna design exhibited a low profile, easy integration into circuit boards, and excellent low-cost mass production suitability.

소형화된 급전부를 갖는 위성통신용 고이득 안테나 설계 (Design of High-gain Antenna for Satellite Communication with Miniaturized Feed Structure)

  • 박중기;박도현;이호섭;허종완;권건섭
    • 전기학회논문지
    • /
    • 제67권11호
    • /
    • pp.1471-1476
    • /
    • 2018
  • In this paper, a high-gain antenna for satellite communication is proposed. The proposed antenna consists of septum polarizer, circular waveguide, Hat-feed structure that has a high-gain and efficiency. Especially, it is smaller and lighter than the conventional satellite communication antennas by applying a hat-feed structure. The measured results show that received gain of proposed antenna is better than 29.9 dBi and transmitted gain of proposed antenna is better than 30.5 dBi. The co-polarized and cross-polarized radiation patterns comply with ITU-RR Ap.8 and ITU-R S.731-1 that are recommended by International Telecommunication Union. The designed high-gain antenna for satellite communication is expected to be used for OTM and airborne satellite systems.

Design Method of a Circularly-Polarized Antenna Using Fabry-Perot Cavity Structure

  • Ju, Jeong-Ho;Kim, Dong-Ho;Lee, Wang-Joo;Choi, Jae-Ick
    • ETRI Journal
    • /
    • 제33권2호
    • /
    • pp.163-168
    • /
    • 2011
  • A Fabry-Perot cavity (FPC) antenna producing both high-gain and circularly-polarized (CP) behavior is proposed. To increase antenna gain and obtain CP characteristics, a superstrate composed of square patches with a pair of truncated corners is placed above the linearly polarized patch antenna with an approximately half-wavelength distance from the ground plane at the operating frequency. The proposed antenna has the advantages of high gain, a simple design, and an excellent boresight axial ratio over the operating frequency bandwidth. Moreover, used in an FPC antenna, the proposed superstrate converts a linear polarization produced by a patch antenna into a circular polarization. In addition, the cavity antenna produces left-hand circular-polarization and right-hand circular-polarization when a patch antenna inside the cavity generates x-direction and y-direction polarization, respectively. The measured and simulated results verify the performance of the antenna.

저고도각 고이득 특성을 이용한 3 소자 CRPA 배열 안테나 설계 (Design of Three-elements CRPA Arrays Using Improved Low-elevation Gain)

  • 류성준;변강일;이준용;추호성
    • 한국위성정보통신학회논문지
    • /
    • 제12권2호
    • /
    • pp.83-88
    • /
    • 2017
  • 본 논문에서는 저고도각 고이득 특성을 이용한 3 소자 CRPA 배열 안테나 설계를 제안하였다. 제안된 안테나는 급전패치와 방사패치로 구성되어 있으며, 급전패치에 동축케이블을 통해 급전부가 직접 연결되고 방사패치에 전자기적으로 간접급전되어 저고도각 이득 특성이 개선되는 구조를 가진다. 제안된 배열안테나의 성능 측정을 전파무반사실에서 수행하였으며, 전면 방향 이득은 2.8 dBic, 축비 특성은 2.7 dB, $75^{\circ}$의 저고도각 평균 이득이 -1.4 dBic를 나타내어 항재밍 성능을 갖는 CRPA 안테나로 적합함을 확인하였다.

새로운 메타물질 Single-Layer를 이용한 2.4GHz 대역을 위한 고 이득 메타물질 패치 안테나 (High Gain Metamaterial Patch Antenna for 2.4GHz Band using New Metamaterial Single-Layer)

  • 박관영;양승인
    • 전자공학회논문지
    • /
    • 제50권6호
    • /
    • pp.56-61
    • /
    • 2013
  • 이 논문에서는 '0'에 가까운 굴절률을 갖는 단일층 메타물질 커버를 이용한 고 이득 패치 안테나를 제안하였다. 보통의 패치 안테나와 제안된 메타물질 패치 안테나를 전산모의를 통해 비교하였고, 제안된 메타물질 패치 안테나를 제작 및 측정하였다. 제안된 메타물질 패치 안테나는 보통의 패치 안테나에 비해 6.77dB 만큼 더 높은 이득을 가진다.

Comparison of Antenna Parameters of R-/S-Band Standard Gain Horn Antennas

  • Kang, Jin-Seob;Kim, Jeong-Hwan;Park, Jeong-Il
    • Journal of electromagnetic engineering and science
    • /
    • 제15권4호
    • /
    • pp.224-231
    • /
    • 2015
  • A comparison of the antenna parameters for R-band (1.7-2.6 GHz) and S-band (2.6-3.95 GHz) standard gain horn antennas has been performed by the Korea Research Institute of Standards and Science (KRISS), together with seven domestic participants from private companies and public institutions. Its purpose, as a proficiency test program of the 'Antenna Measurement Club' of KRISS, was to check equivalences in antenna parameter measurements between KRISS and the participants, particularly in the R-/S-band, to support antenna manufacturers and end users in Korea. The measurement parameters of this comparison are the power gain, radiation pattern, and reflection coefficient of the traveling standards for R-/S-band pyramidal standard gain horn antennas. The comparison used a gain comparison method and an extrapolation method to measure the power gain of the two traveling standards; the radiation patterns were measured in the far-field region of the transmitting and receiving antennas.

Design of 60-GHz Back-to-back Differential Patch Antenna on Silicon Substrate

  • Deokgi Kim;Juhyeong Seo;Seungmin Ryu;Sangyoon Lee;JaeHyun Noh;Byeongju Kang;Donghyuk Jung;Sarah Eunkyung Kim;Dongha Shim
    • 반도체디스플레이기술학회지
    • /
    • 제22권4호
    • /
    • pp.142-147
    • /
    • 2023
  • This paper presents a novel design of a differential patch antenna for 60-GHz millimeter-wave applications. The design process of the back-to-back (BTB) patch antenna is based on the conventional single-patch antenna. The initial design of the BTB patch antenna (Type-I) has a patch size of 0.66 × 0.98 mm2 and a substrate size of 0.99 × 1.48 mm2. It has a gain of 1.83 dBi and an efficiency of 94.4% with an omni-directional radiation pattern. A 0.4 mm-thick high-resistivity silicon (HRS) is employed for the substrate of the BTB patch antenna. The proposed antenna is further analyzed to investigate the effect of substrate size and resistivity. As the substrate resistivity decreases, the gain and efficiency degrade due to the substrate loss. As the substrate (HRS) size decreases approaching the patch size, the resonant frequency increases with a higher gain and efficiency. The BTB patch antenna has optimal performances when the substrate size matches the patch size on the HRS substrate (Type-II). The antenna is redesigned to have a patch size of 0.81 × 1.18 mm2 on the HRS substrate in the same size. It has an efficiency of 94.9% and a gain of 1.97 dBi at the resonant frequency of 60 GHz with an omni-directional radiation pattern. Compared to the initial design of the BTB patch antenna (Type-I), the optimal BTB patch antenna (Type-II) has a slightly higher efficiency and gain with a considerable reduction in antenna area by 34.8%.

  • PDF