• Title/Summary/Keyword: antagonistic rhizobacteria

Search Result 39, Processing Time 0.02 seconds

Molecular Identification and Evaluation of Indigenous Bacterial Isolates for Their Plant Growth Promoting and Biological Control Activities against Fusarium Wilt Pathogen of Tomato

  • Islam, Amanul;Kabir, Md. Shahinur;Khair, Abul
    • The Plant Pathology Journal
    • /
    • v.35 no.2
    • /
    • pp.137-148
    • /
    • 2019
  • In search of an effective biological control agent against the tomato pathogen Fusarium oxysporum f. sp. lycopersici, rhizospheric soil samples were collected from eight agro-ecological zones of Bangladesh. Among the bacteria isolated from soil, 24 isolates were randomly selected and evaluated for their antagonistic activity against F. oxysporum f. sp. lycopersici. The two promising antagonistic isolates were identified as Brevundimonas olei and Bacillus methylotrophicus based on morphological, biochemical and molecular characteristics. These two isolates were evaluated for their biocontrol activity and growth promotion of two tomato cultivars (cv. Pusa Rubi and Ratan) for two consecutive years. Treatment of Pusa Rubi and Ratan seeds with B. olei prior to inoculation of pathogen caused 44.99% and 41.91% disease inhibition respectively compared to the untreated but pathogen-inoculated control plants. However, treatment of Pusa Rubi and Ratan seeds with B. methylotrophicus caused 24.99% and 39.20% disease inhibition respectively. Furthermore, both the isolates enhanced the growth of tomato plants. The study revealed that these indigenous bacterial isolates can be used as an effective biocontrol agent against Fusarium wilt of tomato.

Field Control of Phytophthora Blight of Pepper Plants with Antagonistic Rhizobacteria and DL-$\beta$-Amino-n-Butyric Acid

  • Lee, Jung-Yeop;Kim, Beom-Seok;Lim, Song-Won;Lee, Byung-Kook;Kim, Choong-Hoe;Hwang, Byung-Kook
    • The Plant Pathology Journal
    • /
    • v.15 no.4
    • /
    • pp.217-222
    • /
    • 1999
  • Treatment with antagonistic rhizobactera Burkholderia cepacia strain N9523 or an inducer of resistance DL-$\beta$-amino-n-butyric acid (BABA) effectively inhibited Phytophthora capsici infection on pepper plants in artificially infested pots. Treatment with BABA alone at $1,000\mu\textrm{g}$/ml or together with B. cepacia in combination induced a strong protection from the Phytophthora disease in the greenhouse. In artificially infested field, protection of pepper plants against the Phytophthora epidemic by BABA treatment was maintained at a considerable level. In contrast, soil drench with the antagonist B. cepacia alone, or in combination with BABA did not suppress the Phytophthora epidemic in the field. Mortality of pepper plants caused by P. capsici infection was significantly reduced by treatment with the antagonist Pseudomonas aeruginosa strain 950923-29 and BABA (12-29% plants diseased) relative to the untreated control (41-91% plants diseased) in the naturally infested field. Treatment with the antagonist Ps. aeruginosa strain 950923-29 and BABA also resulted in high levels of protection against Phytophthora blight in pepper plants. In the plastic filmhouse test, the average percentage of plants diseased was significantly low relative to the naturally infested field. Treatment with the antagonist Ps. aeruginosa strain 950923-29 and BABA in combination was most effective in suppressing the Phytophthora disease in field and plastic filmhouse.

  • PDF

Selection and Identification of Auxin-Producing Plant Growth Promoting Rhizobacteria having Phytopathogen-antagonistic activity (Auxin과 항진균물질을 생산하는 식물생장촉진근권세균의 분리동정 및 특성)

  • Kwon, Do-Hvung;Choi, Jun-Hyung;Jeung, Hee-Kyung;Lim, Jong-Hui;Joo, Gil-Jae;Kim, Sang-Dal
    • Applied Biological Chemistry
    • /
    • v.47 no.1
    • /
    • pp.17-21
    • /
    • 2004
  • This study was investigated the physiological properties of auxin-producing bacteria that have plant growth promoting activity and plant pathogen antagonistic ability. Auxin-producing bacteria were isolated from field soils of Gyeongsan, Korea. Selected strains were identified as a Pseudumonas fulva N21 and a Pantoea agglomerans; K35 by morphological and physiological test, and Biolog (Microlog) system. Auxins were determined by Salkowski in vitro test and mungbean adventitious root induction bioassay. Also produced indole-3-acetic acid (IAA) was identified by TLC. During cell growth, auxin production were highest in their idiophase after log phase and $35^{\circ}C$ at pH 7.5.

Isolation and Characterization of Various Strains of Bacillus sp. having Antagonistic Effect Against Phytopathogenic Fungi (식물 병원성 곰팡이에 길항작용을 갖는 다양한 Bacillus sp.의 균주 분리와 특성에 관한 연구)

  • Kim, Hee Sook;Kim, Ji-Youn;Lee, Song Min;Park, Hye-Jung;Lee, Sang-Hyeon;Jang, Jeong Su;Lee, Mun Hyon
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.4
    • /
    • pp.603-613
    • /
    • 2019
  • This study was carried out to examine the antagonistic effect against phytopathogenic fungi of isolated strains from soil samples collected from Busan, Changwon, and Jeju Island: Botrytis cinerea, Colletotrichum acutatum, Corynespora cassiicola, Fusarium sp., Rhizoctonia solani, Phytophthora capsici, and Sclerotinia sclerotiorum. According to results of our studies, isolated strains showed an antagonistic effect against phytopathogenic fungi. Such an antagonistic effect against phytopathogenic fungi is seen due to the production of siderophores, antibiotic substances, and extracellular amylase, cellulase, protease, and xylanase enzyme activities. Extracellular enzymes produced by isolated strains were significant, given that they inhibited the growth of phytopathogenic fungi by causing bacteriolysis of the cell wall of plant pathogenic fungi. This is essential to break down the cell wall of plant pathogenic fungi and thus help plant growth by converting macromolecules, which cannot be used by the plant for growth, into small molecules. In addition, they are putative candidates as biological agents to promote plant growth and inhibit growth of phytopathogenic fungi through nitrogen fixation, indole-3-acetic acid production, siderophore production, and extracellular enzyme activity. Therefore, this study suggests the possibility of using Bacillus subtilis ANGa5, Bacillus aerius ANGa25, and Bacillus methylotrophicus ANGa27 as new biological agents, and it is considered that further studies are necessary to prove their effect as novel biological agents by standardization of formulation and optimization of selected effective microorganisms, determination of their preservation period, and crop cultivation tests.

Selection and Characterization of Antagonistic Microorganisms for Biological Control of Acidovorax citrulli Causing Fruit Rot in Watermelon (수박에 과실썩음병을 유발하는 Acidovorax citrulli의 생물학적 방제를 위한 길항 미생물 선발과 특성 검정)

  • Kim, Ki Young;Park, Hyo Bin;Adhikari, Mahesh;Kim, Hyun Seung;Byeon, Eun Jeong;Lee, In Kyu;Lee, Youn Su
    • Research in Plant Disease
    • /
    • v.28 no.2
    • /
    • pp.69-81
    • /
    • 2022
  • This study was performed to screen the efficacy of antagonistic bacterial isolates from various sources against the bacterial fruit blotch (BFB) causing pathogen (Acidovorax citrulli) in cucurbit crops. In addition, plant growth promoting traits of these antagonistic bacterial isolates were characterized. Two thousand seven hundred ninety-four microorganisms were isolated from the collected samples. Molecular identification revealed two A. citrulli out of 2,794 isolates. In vitro antagonistic results showed that, among the 28 antagonistic bacterial isolates, 24 and 14 bacterial isolates exhibited antagonism against HPP-3-3B and HPP-9-4B, respectively. Antagonistic and growth promotion characterization of the antagonistic bacterial isolates were further studied. Results suggested that, 4 antagonistic bacteria commonly showed both antagonism and growth promotion phenotypes. Moreover, 3 isolates possessed growth promoting activities. Overall results from this study suggests that BFB causing bacterial pathogen (A. citrulli) was suppressed in in vitro antagonism assay by antagonistic bacterial isolates. Furthermore, these antagonistic bacterial isolates possessed growth promotion and antagonistic enzyme production ability. Therefore, data from this study can provide useful basic data for the in vivo experiments which ultimately helps to develop the eco-friendly agricultural materials to control fruit rot disease in cucurbit crops in near future.

Biological Control of Bacterial Fruit Blotch of Watermelon Pathogen (Acidovorax citrulli) with Rhizosphere Associated Bacteria

  • Adhikari, Mahesh;Yadav, Dil Raj;Kim, Sang Woo;Um, Young Hyun;Kim, Hyun Seung;Lee, Seong Chan;Song, Jeong Young;Kim, Hong Gi;Lee, Youn Su
    • The Plant Pathology Journal
    • /
    • v.33 no.2
    • /
    • pp.170-183
    • /
    • 2017
  • Bacterial fruit blotch (BFB), which is caused by Acidovorax citrulli, is a serious threat to watermelon growers around the world. The present study was conducted to screen effective rhizobacterial isolates against 35 different A. citrulli isolates and determine their efficacy on BFB and growth parameters of watermelon. Two rhizobacterial isolates viz. Paenibacillus polymyxa (SN-22), Sinomonas atrocyanea (NSB-27) showed high inhibitory activity in the preliminary screening and were further evaluated for their effect on BFB and growth parameters of three different watermelon varieties under greenhouse conditions. The greenhouse experiment result revealed that SN-22 and NSB-27 significantly reduced BFB and had significant stimulatory effect on total chlorophyll content, plant height, total fresh weight and total dry weight compared to uninoculated plants across the tested three watermelon varieties. Analysis of the 16S ribosomal RNA (rRNA) sequences revealed that strains SN-22 belong to P. polymyxa and NSB-27 to S. atrocyanea with the bootstrap value of 99% and 98%, respectively. The isolates SN-22 and NSB-27 were tested for antagonistic and PGP traits. The result showed that the tested isolates produced siderophore, hydrolytic enzymes (protease and cellulose), chitinase, starch hydrolytic enzymes and they showed phosphate as well as zinc solubilizing capacity. This is the first report of P. polymyxa (SN-22) and S. atrocyanea (NSB-27) as biocontrol-plant growth promoting rhizobacteria on watermelon.

Biosurfactant as a microbial pesticide

  • Lee, Baek-Seok;Choi, Sung-Won;Choi, Ki-Hyun;Lee, Jae-Ho;Kim, Eun-Ki
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.40-44
    • /
    • 2003
  • Soil-borne infectious disease including Pythium aphanidermatum and Rhizoctonia solani causes severe damage to plants, such as cucumber. This soil-borne infectious disease was not controlled effectively by chemical pesticide. Since these diseases spread through the soil, chemical agents are usually ineffective. Instead, biological control, including antagonistic microbe can be used as a preferred control method. An efficient method was developed to select an antagonistic strain to be used as a biological control agent strain. In this new method, surface tension reduction potential of an isolate was included in the ‘decision factor’ in addition to the other factors, such as growth rate, and pathogen inhibition rate. Considering these 3 decision factors by a statistical method, an isolate from soil was selected and was identified as Bacillus sp. GB16. In the pot test, this strain showed the best performance among the isolated strains. The lowest disease incidence rate and fastest seed growth was observed when Bacillus sp. GB16 was used. Therefore this strain was considered as plant growth promoting rhizobacteria (PGPR). The action of surface tension reducing component was deduced as the enhancement of wetting, spreading, and residing of antagonistic strain in the rhizosphere. This result showed that new selection method was significantly effective in selecting the best antagonistic strain for biological control of soil-borne infectious plant pathogen. The antifungal substances against P. aphanidermatum and R. solani were partially purified from the culture filtrates of Bacillus sp. GB16. In this study, lipopeptide possessing antifungal activity was isolated from Bacillus sp. GB16 cultures by various purification procedures and was identified as a surfactin-like lipopeptide based on the Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), high performance liquid chromatography mass spectroscopy (HPLC-MS), and quadrupole time-of-flight (Q-TOF) ESI-MS/MS data. The lipopeptide, named GB16-BS, completely inhibited the growth of Pythium aphanidermatum, Rhizoctonia solani, Penicillium sp., and Botrytis cineria at concentrations of 10 and 50 mg/L, respectively. A novel method to prevent the foaming and to provide oxygen was developed. During the production of surface active agent, such as lipopeptide (surfactin), large amount of foam was produced by aeration. This resulted in the carryover of cells to the outside of the fermentor, which leads to the significant loss of cells. Instead of using cell-toxic antifoaming agents, low amount of hydrogen peroxide was added. Catalase produced by cells converted hydrogen peroxide into oxygen and water. Also addition of corn oil as an oxygen vector as well as antifoaming agent was attempted. In addition, Ca-stearate, a metal soap, was added to enhance the antifoam activity of com oil. These methods could prevent the foaming significantly and maintained high dissolved oxygen in spite of lower aeration and agitation. Using these methods, high cell density, could be achieved with increased lipopeptide productivity. In conclusion to produce an effective biological control agent for soil-borne infectious disease, following strategies were attempted i) effective screening of antagonist by including surface tension as an important decision factor ii) identification of antifungal compound produced from the isolated strain iii) novel oxygenation by $H_2O_2-catalase$ with vegetable oil for antifungal lipopeptide production.

  • PDF

Structural Identification of Antibiotics from Pseudomonas sp. RRj 228, a Antifungal Activity of Collectotrichum acutatum Causing Anthracnose on Pepper (Pseudomonas sp. RRj 228이 분비하는 항균물질의 동정과 고추탄저균 C. acutatum에 대한 항균활성)

  • Jeon, Sang-Yoon;Kim, Yong-Gyun;Lee, Sang-Mong;Son, Hong-Joo;Park, Hyean-Cheal;Kim, Sun-Tae;Park, Ki-Do;Kang, Ui-Gum;Kim, Keun-Ki
    • Journal of Life Science
    • /
    • v.20 no.8
    • /
    • pp.1254-1260
    • /
    • 2010
  • Microorganisms near the plant rhizosphere usually inhabit the surface or the inside of the plant roots and have a direct effect on plant growth by secreting plant growth promoters or antagonistic materials which protect the root zone system from various pathogens. This study was carried out to identify and isolate the antagonistic materials after isolation of microorganisms showing high antagonistic activities, in hopes of contributing to the development of sustainable agriculture and the preservation of agricultural environments. A number of antagonistic bacteria were isolated from paddy soil. Among isolates, RRj 228 showed plant growth promotion and antagonistic activity. RRj 228 was identified as Pseudomonas sp. according to the results of physiological properties and genetic methods. On the basis of the results of anti-fungal spectrum against several pathogens by RRj 228, the antagonistic effect of the isolate against Botrytis cinerea, Pythium ultimum, Phytopthola capsici, and Rhizoctonia solani, especially against red-pepper anthracnose caused by Colletotrichum acutatum, was remarkable. The experiment evaluating the biological control effect by RRj 228 revealed that the $ED_{50}$ value by the RRj 228 culture against C. acutatum, R. solani and P. ultimum were 0.14 mg/ml, 0.16 mg/ml and 0.29 mg/ml, respectively. An antagonistic substance was isolated and purified by several chromatographies from the RRj 228 culture. The $^1H$ and $^{13}C$ assignment of the antagonistic substance was achieved from two-dimensional $^1H-^1H$ COSY, HMQC, and HMBC. Finally, the antagonistic substance was identified as Phenazine-1-carboxylic acid ($C_{13}H_8N_2O_2$, M.W.=224).

Suppressive Effect of Bacterial Isolates from Plant Rhizosphere against Late Blight Caused by Phytophthora citrophthora on Citrus Fruits (식물근권에서 분리한 세균을 처리한 감귤열매에서 감귤 역병 억제 효과)

  • Kang, So-Young;Jeun, Yong-Chull
    • Research in Plant Disease
    • /
    • v.16 no.1
    • /
    • pp.35-40
    • /
    • 2010
  • Suppression effect of the 12 bacterial isolates from plant rhizosphere against late blight caused by Phytophthora citrophthora were investigated on citrus fruits. Among the bacterial isolates, THJ609-3, TRH423-3, BRH433-2, Lyso-chit and KRY505-3 presented disease suppression after wound inoculation with the fungal pathogen in vivo. The anti-fungal activity was evaluated by measuring the length of inhibition zone of the mycelium P. citrophthora adjacent to the effective bacterial isolates in which all of the 5 bacterial isolates showed antagonistic effects. However, there was no positive correlations between the efficacy of disease suppression and the antagonistic effect. On the other hand, Lyso-chit and KRY505-3 were identified as Bacillus cereus, BRH433-2 as B. circulans and TRH423-3 as Burkholderia gladioli, respectively, by analysis of rDNA sequence on the internal transcript spaces. It is suggested that the effective bacterial isolates may be useful for finding biological control agents against late blight especially on environment-friendly farm where the application of fungicide is limited.

Effective Control Strategy against Bacterial Blight on Carrot (당근 세균잎마름병에 대한 효과적 방제 수단)

  • Hyun Su Kang;Mi-Jin Kim;Yong Ho Shin;Yong Chull Jeun
    • Research in Plant Disease
    • /
    • v.29 no.4
    • /
    • pp.405-413
    • /
    • 2023
  • Bacterial blight of carrot caused by Xanthomonas hortorum pv. carotae (Xhc) is one of the serious diseases of carrot, of which control measures has not been still established in the domestic farm. In this study, in order to select effective sterilizer for bacterial blight of carrots, three antibiotics such as streptomycin, oxolinic acid, kasugamycin, two copper compounds like copper hydroxide and copper sulfate basic and three rhizobacteria Burkholderia gladioli MRL408-3, Pseudomonas fluorescens TRH415-2 and Bacillus cereus KRY505-3 were selected to investigate their direct antibacterial effects using artificial media, aiming to identify effective pesticides against Xhc. Among them, treated medium with antibiotics such as streptomycin, oxolinic acid, and the antagonistic rhizobacteria MRL408-3 were formed inhibition zone. The agrochemicals and the rhizobacteria MRL408-3, which showed antibacterial effects on carrot leaves, pre-treated on the carrot leaves and then inoculated with Xhc. High control effects were shown on the carrot leaves pre-treated with both streptomycin and oxolinic acid. Scanning electron microscopy images of the carrot leaf surfaces showed that the population of bacteria decreased significantly on leaves pre-treated with streptomycin and oxolinic acid. From these results, it can be inferred that antibiotics like streptomycin and oxolinic acid exhibit superior control effects compared to other agents. This study provides valuable insights towards establishing an effective control system for bacterial blight of carrot.