• Title/Summary/Keyword: anodic current

Search Result 429, Processing Time 0.025 seconds

Influence of Ca-Si Addition on Anodic Polarization Chgaraqcteristics of Al-Zn-In Anodes (海水中 Al-Zn-In 合金陽極의 分極特性에 미치는 Ca-Si 添加의 影響)

  • Seo, Chang-Je
    • Journal of the Korean institute of surface engineering
    • /
    • v.12 no.1
    • /
    • pp.3-10
    • /
    • 1979
  • Many excellent Al-Zn-In anode have been developed up to the present. But for the purpose of the better performance of Al-Zn-In anodes in sea water the effect of calcium silicon addition on anodic polarization and current capacity of Al-Zn-In anodes was measured and analysed in sea water and artificial sea water. The results and conclusions obtained are summarized as follows. 1) Being compared with Al-Zn-In anodes, Al-Zn-In anodes containing 0.05% calcium silicon had superior characteristics in both anodic polarization and current capacity. 2) Corrosion patterns of the anodes containing calcium silicon were much more uniform than those of Al-Zn-In anodes. 3) In this experiment the most useful anode was Al-4% Zn-0.03% In-0.05% (Ca-Si). It had a capacity of 2.60Amp-hr of current/g and a voltage of 1.13(SCE reference) at anodic current density 1,000 4{\mu}A/cm^2$.

  • PDF

Dielectric breakdown of anodic oxide films formed on AA6061 in 20% H2O4and 8% H2SO4+ 3% C2H2O4 solutions (20% 황산 및 8% 황산 + 3% 옥살산에서 AA6061 합금 표면에 형성된 아노다이징 피막의 내전압 특성)

  • Cheolgi Park;Jaehwak Jang;Yunsuk Hyun;Sungmo Moon
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.1
    • /
    • pp.8-13
    • /
    • 2024
  • Anodizing of Al6061 alloy was conducted in two different electrolytes of 20% sulfuric acid and 8% sulfuric acid + 3 % oxalic acid solutions at a constant current or decreasing current density conditions, and its dielectric breakdown voltage was measured. The surface morphology of anodic oxide films was observed by TEM and thermal treatment was carried out at 400 ℃ for 2 h to evaluate the resistance of the anodic oxide films to crack initiation. The anodic oxide film formed in 8% sulfuric acid + 3 % oxalic acid solution showed higher dielectric breakdown voltage and better resistance to crack initiation at 400 ℃ than that formed in 20% sulfuric acid solution. The dielectric breakdown voltage increased 6 ~12% by applying decreasing current density comparing with a constant current density.

A Study on the Properties of Anodic Oxide Films Formed on Al Alloys in Oxalic Acid (알루미늄 합금 소재의 옥살산 아노다이징 피막 물성 연구)

  • Jeong, Nagyeom;Park, Jihyun
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.5
    • /
    • pp.249-256
    • /
    • 2020
  • As the size of manufacturing equipment for LCD and OLED displays increases, replacement of existing heavy stainless steel components with light metals, such as aluminum alloys, is being more important in semiconducting and display manufacturing industries. To use aluminum alloys for components in semiconducting and display industries, it is important to develop a new anodization method for improved performance of anodic oxide films than conventional anodization method based on sulfuric acid. In this work, optimum applied current density and the best sealing methods for anodic oxide films in 3% oxalic acid were explored. Experimental results showed 2.5 A/dm2 is the best applied current density for improved hardness and dielectric breakdown voltage. Sealing of the anodic oxide films further improved their hardness, dielectric breakdown voltage and resistance to HCl, by which application of anodic oxide films become applicable for components in semiconducting and display industries.

Influence of Corrosion Potential and Current Density on Polarization Curve Variations using Polycarbonate[III]

  • Park, Chil-Nam;Yang, Hyo-Kyung;Kim, Sun-Kyu;Kim, Myung-Sun;Cheong, Kyung-Hoon
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.1
    • /
    • pp.43-50
    • /
    • 2000
  • In this study, experiments were carried out to measure the variations in the corrosion potential and current density of polarization curves using polycarbonate. The results were particularly examined to identify the influences affecting the corrosion potential including various conditions such as temperature, pH, catalytic enzyme, and salt. The lines representing the active anodic dissolution were only slightly shifted in the potential direction by temperature, pH, enzyme, and salt. The tafel slope for the anodic dissolution was determined based on the polarization effect with various conditions. The slope of the polarization curves describing the active-to-passive transition region were noticeably shifted in direction. Also, from the variation in the conditions, the optimum conditions were established for the most rapid transformation, including temperature, pH, corrosion rate, and resistance of corrosion potential. The second anodic current density peak and maximum passive current density were designated as the critical corrosion sensitivity(Ir/If). The value of Ir/If was then used in measuring the extent of the critical corrosion sensitivity of the polycarbonate. The potentiodynamic parameters of the corrosion were obtained using a Tafel plot.

  • PDF

Electrochemical Random Signal Analysis during Localized Corrosion of Anodized 1100 Aluminum Alloy in Chloride Environments

  • Sakairi, M.;Shimoyama, Y.;Nagasawa, D.
    • Corrosion Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.168-172
    • /
    • 2008
  • A new type of electrochemical random signal (electrochemical noise) analysis technique was applied to localized corrosion of anodic oxide film formed 1100 aluminum alloy in $0.5kmol/m^3$ $H_3BO_4/0.05kmol/m^3$ $Na_2B_4O_7$ with $0.01kmol/m^3$ NaCl. The effect of anodic oxide film structure, barrier type, porous type, and composite type on galvanic corrosion resistance was also examined. Before localized corrosion started, incubation period for pitting corrosion, both current and potential slightly change as initial value with time. The incubation period of porous type anodic oxide specimens are longer than that of barrier type anodic oxide specimens. While pitting corrosion, the current and potential were changed with fluctuations and the potential and the current fluctuations show a good correlation. The records of the current and potential were processed by calculating the power spectrum density (PSD) by the Fast Fourier Transform (FFT) method. The potential and current PSD decrease with increasing frequency, and the slopes are steeper than or equal to minus one (-1). This technique allows observation of electrochemical impedance changes during localized corrosion.

Corrosion Tests for High Chromium Cast Iron Using Galvanostatic Polarization Technique in a Simulating Slurry Solution (모사 슬러리 용액에서 정전류 분극을 활용한 고크롬 주철 부식 시험)

  • Ochgerel Baasanjav;Jun-Seob Lee;Ye-Jin Lee;Jun-Seok Oh;Je-hyun Lee
    • Corrosion Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.252-256
    • /
    • 2023
  • The galvanostatic polarization technique was used to accelerate corrosion in high chromium cast iron (HCCI) immersed in a simulated slurry solution of 0.1 mol dm-3 H2SO4, 0.05 mol dm-3 HCl, and 10 wt% SiC. The HCCI contained 27 wt% of Cr and 2.8 wt% of C, and its microstructure mainly comprised austenitic and carbide phases. A two-electrode system using a dense carbon rod and the HCCI sample was employed for the galvanostatic polarization by applying an anodic current for 24 hours. The corrosion rate increased upon applying the anodic current, but the increase was not significant, particularly for current densities higher than 10 µA cm-2. Following polarization, the corrosion morphology revealed that the anodic current accelerated surface corrosion in the HCCI; however while the depth of the corroded area increased, the increase was not substantial. The propagation behavior of the anodic current and its impact on corrosion were further discussed.

Influence of Redox Potential Current Density on Polarization Curves with Polypropylene Polymer

  • Park, Chil-Nam;Kim, Myung-Sun
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.4
    • /
    • pp.255-261
    • /
    • 2000
  • Experiments were carried out to measure the corrosion potential and current density variations in the polarization curves of polypropylene. In particular, the results were examined to identify those influences affecting the corrosion potential, such as temperature, pH, salt, and oxygen. The Tafel slope for the anodic dissolution was determined based on the polarization effect under various conditions. Furthermore, the optimum conditions for the most rapid transformation were establish based on a variety of conditions, including temperature, pH, corrosion rate, and resistance of corrosion potential. The second anodic current density peak and maximum passive current density were designated as the critical corrosion sensitivity(I(sub)r/I(sub)f). This I(sub)r/I(sub)f value was then used to measure the critical corrosion sensitivity of polypropylene. The potentiodynamic parameters of corrosion were obtained using a Tafel plot.

  • PDF

Anodic Oxidation Treatment Methods of Metals (금속의 양극산화처리 기술)

  • Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • Anodic oxidation treatment of metals is one of typical surface finishing methods which has been used for improving surface appearance, bioactivity, adhesion with paints and the resistances to corrosion and/or abrasion. This article provides fundamental principle, type and characteristics of the anodic oxidation treatment methods, including anodizing method and plasma electrolytic oxidation (PEO) method. The anodic oxidation can form thick oxide films on the metal surface by electrochemical reactions under the application of electric current and voltage between the working electrode and auxiliary electrode. The anodic oxide films are classified into two types of barrier type and porous type. The porous anodic oxide films include a porous anodizing film containing regular pores, nanotubes and PEO films containing irregular pores with different sizes and shapes. Thickness and defect density of the anodic oxide films are important factors which affect the corrosion resistance of metals. The anodic oxide film thickness is limited by how fast ions can migrate through the anodic oxide film. Defect density in the anodic oxide film is dependent upon alloying elements and second-phase particles in the alloys. In this article, the principle and mechanisms of formation and growth of anodic oxide films on metals are described.

Removal of Heavy Metal Ions in the Aqueous Solution Using Anodic Alumina and Retriculate Vitreous Carbon Electrodes (Anodic Alumina와 Retriculate Vitreous Carbon을 전극으로 사용하여 수용액에서 중금속이온의 제거)

  • Cho, Seung-Koo;Lee, Keon-Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.4
    • /
    • pp.120-129
    • /
    • 2003
  • The anodic alumina is synthesized using 0.3M oxalic acid and the barrier layers of the anodic alumina are removed using the 20wt% $H_2SO_4$ solution. The structure of the anodic alumina is analyzed by XRD and SEM. It is observed by SEM that the size of anodic alumina pore is about 60nm. And the uniformity of the anodic alumina surface under the 20wt% $H_2SO_4$ solution is poorer than the unifomity of the the normal anodic alumina surface. The anodic alumina and the carbon are used cathode and anode in$Cd(NO_3)_2{\cdot}4H_2O$, $Co(NO_3)_2{\cdot}6H_2O$ and $PbSO_4$ solutions. In this study, the constant D.C. electrical current is flowed in each solution for 24hours. It is found that the voltages so far as 4.6, 3.4 and 5.1V at $Cd(NO_3)_2{\cdot}4H_2O$, $Co(NO_3)_2{\cdot}6H_2O$ and $PbSO_4$ solutions increase with increasing the flowing current time and after the voltage does not change which values are 4.2, 2.7 and 2.4V, respectively. The amount of metal ions in solutions decrease with increasing the flowing current time until the flowing current time is 18hours and the metals are formed at the surface of anodic alumina. After the metal ions are removed using the anodic alumina, and $Cd^{2+}$, $Co^{2+}$ and $Pb^{2+}$ ions are removed again using flow cell with retriculate vitreous carbon(RVC) working electrode. The concentration of $Cd^{2+}$, and $Co^{2+}$ions decrease until the flowing time of the solutions is 20minutes and the concentration of $Pb^{2+}$ ion decreases until that time is 30minutes. In this case, the removal effects of $Cd^{2+}$, $Co^{2+}$ and $Pb^{2+}$ ions are 34.78, 28.79 and 86.38%, respectively. And it is possible that both $Cd^{2+}$ and $Co^{2+}$ions are adsorbed in pore of RVC at the same time and the removal effects of $Cd^{2+}$ and $Co^{2+}$ions are 32.30 and 31.37%.

  • PDF

AN ELECTROCHEMICAL STUDY BY USING A POTENTIOSTAT ON THE CORROSION OF AMALGAMS IN SALIVA (Potentiostat를 이용한 타액에서의 아말감부식에 대한 전기화학적 연구)

  • Son, Yoon-Hee;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.2
    • /
    • pp.534-548
    • /
    • 1994
  • The purpose of this study is to observe the corrosion characteristics of seven dental amalgams (CAULK FINE CUT, CAULK SPHERICAL, OPTALLOY II, DISPERSALLOY, HI VERALOY, TYTIN, VALIANT) through the anodic polarization curve obtained by using a potentiostat. After each amalgam alloy and Hg being triturated, the triturated mass was inserted into the cylindrical metal mold, and condensed by hydrolic pressure(160 kg/$cm^2$). Each specimen was removed from the metal mold. 24 hours after condensation, specimens were polished with the emery paper and stored at room temperature for 1 week. The anodic polarization curves were employed to compare the corrosion behaviours of the amalgam in 0.9% saline solution, Fusayama's artificial saliva, and stimulated parotid saliva at $37^{\circ}C$ with 3-electrode potentiostat. After the immersion of specimen in electrolyte for 1 hour, the potential scan was begun. The potential scan range was. -1700m V ~ + 400m V(vs. S. C. E) in the working electrode and the scan rate was 50m V /sec. The results were as follows, 1. The corrosion potential, the potential of anodic current peak, and transpassive potential in the stimulated parotid saliva shifted to more anodic direction than those in saline solution, and the current density in the stimulated parotid saliva was lower than that in saline solution. Those in Fusayama's artificial saliva was similar to those in stimulated parotid saliva. 2. The anodic polarization profiles in Fusayama's artificial saliva and stimulated parotid saliva indicated a region of slow slope current density, which is extending from the corrosion potential to the potential of anodic current peak, but that in 0.9% saline solution indicated no region of slow slope. 3. The corrosion potentials for CAULK FINE CUT, CAULK SPHERICAL, and OPT ALLOY II had the similarity in 0.9% saline solution, Fusayama's artificial saliva and stimulated parotid saliva, but those for high coper amalgam and VALIANT had no similarity. 4. The current density for TYTIN amalgam in stimulated parotid saliva was the lowest among the others. 5. As for current density, there was no significant difference between palladium enriched VALINAT and other high copper amalgams.

  • PDF