• Title/Summary/Keyword: anode melting

Search Result 22, Processing Time 0.028 seconds

Development of Large-scale Ni-Al Alloy Fabrication Process at Low Temperature (대용량 저온 Ni-Al 합금 분말 제조 공정 개발)

  • LEE, MIN JAE;KANG, MIN GOO;JANG, SEONG-CHEOL;HAM, HYUNG CHUL;AHN, JOONG WOO;NAM, SUK WOO;YOON, SUNG PIL;HAN, JONGHEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.1
    • /
    • pp.64-70
    • /
    • 2018
  • In this study, the kg-class Ni-Al alloy fabrication process at low temperature was developed from the physical mixture of Ni and Al powders. The AlCl3 as an activator was used to reduce the temperature of alloy synthesis below the melting temperature of Ni and Al elements (<$500^{\circ}C$). Mixed phase of Ni3Al intermetallic and Ni-Al solid-solution were identified in the XRD pattern analysis. Furthermore, from the analysis of SEM and particle size analyzer, we found that the particle size of synthesized alloy powders was not changed compared to the initial size of Ni particle after the formation of alloy powder at $500^{\circ}C$. In the creep test, the anode (which was fabricated by the prepared Ni-Al alloy powders in this study) displayed the enhanced creep resistance compared to the conventional anode.

Review of interface engineering for high-performance all-solid-state batteries (계면 제어를 기반으로 한 고성능 전고체 전지 연구)

  • Insu, Hwang;Hyeon Jeong, Lee
    • Journal of Industrial Technology
    • /
    • v.42 no.1
    • /
    • pp.19-27
    • /
    • 2022
  • This review will discuss the effort to understand the interfacial reactions at the anode and cathode sides of all-solid-state batteries. Antiperovskite solid electrolytes have received increasing attention due to their low melting points and anion tunability which allow controlling microstructure and crystallographic structures of this material system. Antiperovskite solid electrolytes pave the way for the understanding relationship between critical current density and mechanical properties of solid electrolytes. Microstructure engineering of cathode materials has been introduced to mitigate the volume change of cathode materials in solid-state batteries. The hollow microstructure coupled with a robust outer oxide layer effectively mitigates both volume change and stress level of cathode materials induced by lithium insertion and extraction, thus improving the structural stability of the cathode and outer oxide layer, which results in stable cycling performance of all-solid-state batteries.

A Study of Process factors on the Recycling of Reactive Metal Scraps in Plasma Arc Remelting (Plasma Arc Remelting에서 활성 금속 Scrap 재활용에 미치는 공정인자의 연구)

  • Jung, Jae-Young;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.3-9
    • /
    • 2017
  • In this study, plasma arc remelting behaviors according to arc current, arc voltage, and types of plasma gas were investigated using Kroll processed Ti sponges as anode. In the discharge pressure range of vacuum pump ($200{\sim}300kgf/cm^2$), the arc voltage did not vary greatly with the increase of discharge pressure at a given arc length. This means that the pressure in the vacuum chamber during operation hardly changes and the atmospheric pressure maintains. Under various conditions of arc currents (700~900A), the arc voltage slightly increased with arc current. The effects of anode materials and operational variables on the arc length-arc voltage relationship were compared with the results in previous studies. When the atmospheric gas changed from argon to helium, double effect of improvement on the output of the steady state was observed. The increase of output in the plasma arc device was accompanied by an increase in the melting rate of the Ti sponge and the quality of the ingot surface was also improved. The plasma arc remelting of the new scrap titanium and the old scrap zirconium alloy could result in the fabrication of an ingot with high surface quality.

High Efficient and Stable Dye-sensitized Solar Cells (DSSCs) with Low Melting Point Glass Frits

  • Kim, Jong-U;Kim, Dong-Seon;Kim, Hyeong-Sun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.42.2-42.2
    • /
    • 2011
  • $TiO_2$ films were modified by adding a glass frit as a light scattering particle and applied to an anode electrode in dye-sensitized solar cells (DSSCs) to enhance the adhesion between $TiO_2$ and fluorine doped transparent oxide (FTO). Low melting point glass frits at contents of (3 to 7wt%) were added to the nano crystalline $TiO_2$ films. The light scattering properties, photovoltaic properties and microstructures of the photo electrodes were examined to determine the role of the low glass transition temperature ($T_g$) glass frit. Electrochemical impedance spectroscopy, Brunauer-Emmett-Teller method and scratch test were conducted to support the results. The DSSC with the $TiO_2$ film containing 3wt% low Tg glass frit showed optimal performance (5.1%, energy conversion efficiency) compared to the $TiO_2$-based one. The photocurrent density slightly decreased by adding 3wt% of the frit due to its large size and non conductivity. However, the decrease of current density followed by the decrease of electron transfer due to the large frit in $TiO_2$ electrode was compensated by the scattering effect, high surface area and reduced the electron transfer impedance at the electrolyte-dye-$TiO_2$ interface. The stability of the photo electrodes was improved by the frit, which chemically promoted the sintering of $TiO_2$ at relatively low temperature ($450^{\circ}C$).

  • PDF

Electrochemical Behavior of Tin and Silver during the Electrorecycling of Pb-free Solder (Sn-Ag-Cu) Waste (폐무연솔더(Sn-Ag-Cu)의 전해재활용 시 주석과 은의 전기화학적 거동 연구)

  • Kim, Min-seuk;Lee, Jae-chun;Kim, Rina;Chung, Kyeong-woo
    • Resources Recycling
    • /
    • v.31 no.3
    • /
    • pp.61-72
    • /
    • 2022
  • We investigated the electrochemical behavior of Sn (93.0 %)-Ag (4.06 %)-Cu (0.89 %) during electrolysis of Pb-free solder waste to recover tin and silver. A thin strip of the solder waste produced by high-temperature melting and casting was used as a working electrode to perform electrochemical analysis. During anodic polarization, the current peak of an active region decreased with an increase in the concentration of sulfuric acid used as an electrolyte. This resulted in the electro-dissolution of the working electrode in the electrolyte (1.0 molL-1 sulfuric acid) for a constant current study. The study revealed that the thickening of an anode slime layer at the working surface continuously increased the electrode potential of the working electrode. At 10 mAcm-2, the dissolution reaction continued for 25 h. By contrast, at 50 mAcm-2, a sharp increase in the electrode potential stopped the dissolution in 2.5 h. During dissolution, silver enrichment in the anode slime reached 94.3% in the 1 molL-1 sulfuric acid electrolyte containing a 0.3 molL-1 chlorine ion, which was 12.7% higher than that without chlorine addition. Moreover, the chlorine enhanced the stability of the dissolved tin ions in the electrolyte as well as the current efficiency of tin electro-deposition at the counter electrode.

Comparison of Metal Transfer Behavior in Electrodes for Shielded Metal Arc Welding

  • Xu, X.;Liu, S.;Bang, K.S.
    • International Journal of Korean Welding Society
    • /
    • v.4 no.1
    • /
    • pp.15-22
    • /
    • 2004
  • Metal transfer behavior of three shielded metal arc welding electrodes, AWS El1018, E6013 and E6010, were investigated through the characterization of size distribution of droplets and measurement of arc voltage signals. Of the three electrodes, Ell018 electrode showed the largest droplet size with the smallest amount of spatter, while E6010 electrode showed the smallest droplet size with the largest amount of spatter. Even though Ell0l8 electrode showed a good agreement between the frequencies of voltage drop in FFT processed voltage signals and the transfer rate of droplets, E6013 and E6010 electrodes showed weaker correlation because of their dominant explosive transfer behavior. The type of cathode used and electrode baking time also influenced the metal transfer behavior. Compared to bead-on-plate welding using steel plate as a cathode, welding on a water-cooled copper pipe showed less short-circuiting and higher melting rate in all electrodes because of higher arc potential and/or anode drop. When baked for a long time, E6010 electrode showed much more stable arc with less short-circuiting and explosion due to the loss of gas formation ingredients.

  • PDF

Microstructures and Electrochemical Properties of Si-M (M : Cr, Ni) as Alloy Anode for Li Secondary Batteries (리튬이차전지용 Si-M (M : Cr, Ni) 합금 음극의 미세구조와 전기화학적 특성)

  • Lee, Sung-Hyun;Sung, Jewook;Kim, Sung-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.2
    • /
    • pp.68-74
    • /
    • 2015
  • To compare the microstructure and electrochemical properties between two binary alloys (Cr-Si, Ni-Si), two composition of binary alloys with the same capacity were selected using phase-diagram and prepared by matrix-stabilization method to suppress the volume expansion of Si by inactive-matrix. Master alloys were made by Arc-melting followed by fine structured ribbon sample preparation by Rapid Solidification Process (RSP, Melt-spinning method) under the same conditions. Also powder samples were produced by wet grinding for X-Ray Diffraction (XRD) and electrochemical measurements. As predicted from the phase diagram, only active-Si and inactive-matrix ($CrSi_2$, $NiSi_2$) were detected. The results of Scanning Electron Microscope (SEM) and Transmission Electron Microscopy - Energy Dispersive X-ray Spectroscopy (TEM-EDS) show that Cr-Si alloy has finer microstructure than Ni-Si alloy, which was also predictable through phase diagram. The electrochemical properties related to microstructure were evaluated by coin type full- and half-cells. Separately, self-designed test-cells were used to measure the volume expansion of Si during reaction. Volume expansion of Cr-Si alloy electrode with finer microstructure was suppressed significantly and improved in cycle capability, in comparison Ni-Si alloy with coarse microstructure. From these, we could infer the correlation of microstructure, volume expansion and electrochemical degradation and these properties might be predicted by phase diagram.

The Corrosion Properties of Zr-Cr-NM Alloy Metallic Waste Form for Long-term Disposal (Zr-Cr-NM 금속폐기물고화체 합금의 장기처분을 위한 부식특성)

  • Han, Seungyoub;Jang, Seon Ah;Eun, Hee-Chul;Choi, Jung-Hoon;Lee, Ki Rak;Park, Hwan Seo;Ahn, Do-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.2
    • /
    • pp.125-133
    • /
    • 2017
  • KAERI is conducting research on spent cladding hulls and additive metals to generate a solidification host matrix for the noble metal fission product waste in anode sludge from the electro-refining process to minimize the volume of waste that needs to be disposed of. In this study, alloy compositions Zr-17Cr, Zr-22Cr, and Zr-27Cr were prepared with or without eight noble metals representing fuel waste using induction melting. The microstructures of the resulting alloys were characterized and electrochemical corrosion tests were conducted to evaluate their corrosion characteristics. All the compositions had better corrosion characteristics than other Zr-based alloys that were evaluated for comparison. Analysis of the leach solution after the corrosion test of the Zr-22Cr-8NM specimen indicated that the noble metals were not leached during corrosion under 500 mV imposed voltage, which simulates a highly oxidizing disposal environment. The results of this study confirm that Zr-Cr based compositions will likely serve as chemically stable waste forms.

Thermal Characteristics of Zr/BaCrO4 Heat Paper with Fuel/Oxidizer Compositions (조성비에 따른 Zr/BaCrO4 열지의 열적 특성)

  • Im, Chae-Nam;Lee, Jung-Min;Park, Byeong-June;Kang, Seung-Ho;Cheong, Hae-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.10
    • /
    • pp.652-658
    • /
    • 2016
  • Thermal batteries use inorganic salt as electrolyte, which is inactive at room temperature. As soon as heat pellets are fired by an igniter, all the solid electrolytes are instantly melted into excellent ionic conductors. However, the abnormal heat generation by the igniter flame or heat pellets causes the thermal decomposition of the electrode and the melting of the anode, eventually leading to a thermal runaway, which results in overheating or explosion. The thermal runaway can be significantly reduced by the adoption of $Zr/BaCrO_4$ heat papers. In this study, the heat papers with various ratios of fuel (Zr) and oxidizer ($BaCrO_4$) were prepared by the paper-making process. We have investigated the calorimetric value, burning rate, and ignition sensitivity. The ignition test of heat pellets and the discharge test of thermal batteries were also carried out. At the composition of 40 wt.% of Zr, the heat papers showed the highest specific calorimetric value and burning rate. As a result, $Zr/BaCrO_4$ heat paper made by the paper-making process has shown the applicability for thermal batteries.

Reactive sputtered tin adhesion for wastewater treatment of BDD electrodes (TiN 중간층을 이용한 수처리용 BDD 전극)

  • KIM, Seo-Han;KIM, Shin;KIM, Tae-Hun;SONG, Pung-Keun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.69-69
    • /
    • 2017
  • For several decades, industrial processes consume a huge amount of raw water for various objects that consequently results in the generation of large amounts of wastewater. There effluents are mainly treated by conventional technologies such are aerobic, anaerobic treatment and chemical coagulation. But, there processes are not suitable for eliminating all hazardous chemical compounds form wastewater and generate a large amount of toxic sludge. Therefore, other processes have been studied and applied together with these techniques to enhance purification results. These techniques include photocatalysis, absorption, advanced oxidation processes, and ozonation, but also have their own drawbacks. In recent years, electrochemical techniques have received attention as wastewater treatment process that show higher purification results and low toxic sludge. There are many kinds of electrode materials for electrochemical process, among them, boron doped diamond (BDD) attracts attention due to good chemical and electrochemical stability, long lifetime and wide potential window that necessary properties for anode electrode. So, there are many researches about high quality BDD, among them, researches are focused BDD on Si substrate. But, Si substrate is hard to apply electrode application due to the brittleness and low life time. And other substrates are also not suitable for wastewater treatment electrode due to high cost. To solve these problems, Ti has been candidate as substrate in consideration of cost and properties. But there are critical issues about adhesion that must be overcome to apply Ti as substrate. In this study, to overcome this problem, TiN interlayer is introduced between BDD and Ti substrate. TiN has higher electrical and thermal conductivity, melting point, and similar crystalline structure with diamond. The TiN interlayer was deposited by reactive DC magnetron sputtering (DCMS) with thickness of 50 nm, $1{\mu}m$. The microstructure of BDD films with TiN interlayer were estimated by FE-SEM and XRD. There are no significant differences in surface grain size despite of various interlayer. In wastewater treatment results, the BDD electrode with TiN (50nm) showed the highest electrolysis speed at livestock wastewater treatment experiments. It is thought to be that TiN with thickness of 50 nm successfully suppressed formation of TiC that harmful to adhesion. And TiN with thickness of $1{\mu}m$ cannot suppress TiC formation.

  • PDF