• 제목/요약/키워드: annual maximum series

검색결과 114건 처리시간 0.112초

The Recent Increasing Trends of Exceedance Rainfall Thresholds over the Korean Major Cities (한국의 주요도시지점 기준강수량 초과 강수의 최근 증가경향 분석)

  • Yoon, Sun-Kwon;Moon, Young-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제34권1호
    • /
    • pp.117-133
    • /
    • 2014
  • In this study, we analysed impacts of the recent increasing trend of exceedance rainfall thresholds for separation of data set and different research periods using Quantile Regression (QR) approach. And also we performed significant test for time series data using linear regression, Mann-Kendall test and Sen test over the Korean major 8-city. Spring and summer precipitation was tend to significant increase, fall and winter precipitation was tend to decrease, and heavy rainy days in last 30 years have increased from 3.1 to 15 percent average. In addition, according to the annual ranking of rainfall occurs Top $10^{th}$ percentile of precipitation for 3IQR (inter quartile range) of the increasing trend, most of the precipitation at the point of increasing trend was confirmed. Quantile 90% percentile of the average rainfall 43.5mm, the increasing trend 0.1412mm/yr, Quantile 99% percentile of the average rainfall 68.0mm, the increasing trend in the 0.1314mm/yr were analyzed. The results can be used to analyze the recent increasing trend for the annual maximum value series information and the threshold extreme hydrologic information. And also can be used as a basis data for hydraulic structures design on reflect recent changes in climate characteristics.

Extreme Sea Level Analysis in Coastal Waters around Korean Peninsula Using Empirical Simulation Technique (경험모의기법을 이용한 한반도 주변 해역에서의 극치해면 분석)

  • Suh, Kyung-Duck;Yang, Young-Chul;Jun, Ki-Chun;Lee, Dong-Young
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • 제21권3호
    • /
    • pp.254-265
    • /
    • 2009
  • The estimation of the extreme sea level is necessary in the design of offshore or coastal structures. In this paper, the storm surge data calculated numerically at 52 harbors around the Korean Peninsula are analyzed by using annual maximum series(AMS), peaks over threshold(POT) and empirical simulation technique(EST). The maximum likelihood method was used to estimate the parameters in both AMS and POT models. The Generalized Pareto distribution was used and Chi-square and Kolmogorov-Smirnov goodness-of-fit tests were performed with the acceptable significance level 5%. The extreme sea levels were also evaluated by EST including tide effect, showing similar results as given by Jeong et al.(2008).

Influence of EDZ on the Safety of a Potential HLW Repository

  • Hwang Yong-Soo;Kang Chul-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • 제2권4호
    • /
    • pp.253-262
    • /
    • 2004
  • Construction of tunnels in a deep crystalline host rock for a potential High-Level Radioactive Waste(HLW) repository inevitably generates an excavation disturbed zone (EDZ). There have been a series of debates on whether a permeability in an EDZ increases or not and what would be the maximum depth of an EDZ. Recent studies show mixed opinions on permeability. However, there has been an international consensus on the thickness of an EDZ; 30 cm for TBM and 1 meter for controlled blast. One of the impacts of an EDZ is on determining the distance between adjacent deposition holes. The void gap by the excavation hinders relaxation of temperature profiles so that the current Korean reference designing distance between holes should be stretched out more to keep the maximum temperature in a buffer region below 100 degrees Celsius. The other impact of an EDZ is on the long-term post closure radiological safety. To estimate the impact, the reference scenario, the well scenario, is chosen. Released nuclides diffuse through a bentonite buffer region experiencing strong sorption and reach a fracture surrounded by a porous medium. Inside a fractured porous region, radionuclides migrate by advection and dispersion with matrix diffusion into a porous medium. Finally, they reach a well assumed to be a source of potable water for local residents. The annual individual dose is assessed on this well scenario to find out the significance of an EDZ. A profound sensitivity study was performed, but all results show that the impact is negligible. Even though the role of an EDZ turns out to be limited on overall safety assessment, still it is worthwhile to study the chemical role of an EDZ, such as a potential source for natural colloids, potential sealing of an open fracture by fine clay particles generated by the process of an EDZ, and alteration of a sorption mechanism by an EDZ in the future.

  • PDF

Geographical Impact on the Annual Maximum Rainfall in Korean Peninsula and Determination of the Optimal Probability Density Function (우리나라 연최대강우량의 지형학적 특성 및 이에 근거한 최적확률밀도함수의 산정)

  • Nam, Yoon Su;Kim, Dongkyun
    • Journal of Wetlands Research
    • /
    • 제17권3호
    • /
    • pp.251-263
    • /
    • 2015
  • This study suggested a novel approach of estimating the optimal probability density function (OPDF) of the annual maximum rainfall time series (AMRT) combining the L-moment ratio diagram and the geographical information system. This study also reported several interesting geographical characteristics of the AMRT in Korea. To achieve this purpose, this study determined the OPDF of the AMRT with the duration of 1-, 3-, 6-, 12-, and 24-hours using the method of L-moment ratio diagram for each of the 67 rain gages in Korea. Then, a map with the Thiessen polygons of the 67 rain gages colored differently according the different type of the OPDF, was produced to analyze the spatial trend of the OPDF. In addition, this study produced the color maps which show the fitness of a given probability density function to represent the AMRT. The study found that (1) both L-skewness and L-kurtosis of the AMRT have clear geographical trends, which means that the extreme rainfall events are highly influenced by geography; (2) the impact of the altitude on these two rainfall statistics is greater for the mountaneous region than for the non-mountaneous region. In the mountaneous region, the areas with higher altitude are more likely to experience the less-frequent and strong rainfall events than the areas with lower altitude; (3) The most representative OPDFs of Korea except for the Southern edge are Generalized Extreme Value distribution and the Generalized Logistic distribution. The AMRT of southern edge of Korea was best represented by the Generalized Pareto distribution.

A study on a tendency of parameters for nonstationary distribution using ensemble empirical mode decomposition method (앙상블 경험적 모드분해법을 활용한 비정상성 확률분포형의 매개변수 추세 분석에 관한 연구)

  • Kim, Hanbeen;Kim, Taereem;Shin, Hongjoon;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • 제50권4호
    • /
    • pp.253-261
    • /
    • 2017
  • A lot of nonstationary frequency analyses have been studied in recent years as the nonstationarity occurs in hydrologic time series data. In nonstationary frequency analysis, various forms of probability distributions have been proposed to consider the time-dependent statistical characteristics of nonstationary data, and various methods for parameter estimation also have been studied. In this study, we aim to introduce a parameter estimation method for nonstationary Gumbel distribution using ensemble empirical mode decomposition (EEMD); and to compare the results with the method of maximum likelihood. Annual maximum rainfall data with a trend observed by Korea Meteorological Administration (KMA) was applied. As a result, both EEMD and the method of maximum likelihood selected an appropriate nonstationary Gumbel distribution for linear trend data, while the EEMD selected more appropriate nonstationary Gumbel distribution than the method of maximum likelihood for quadratic trend data.

A Study on the Daily Probability of Rainfall in the Taegu Area according to the Theory of Probaility (대구지방(大邱地方)의 확률일우량(確率日雨量)에 관(關)한 연구(硏究))

  • Kim, Young Ki;Na, In Yup
    • Economic and Environmental Geology
    • /
    • 제4권4호
    • /
    • pp.225-234
    • /
    • 1971
  • With the advance of civilization and steadily increasing population rivalry and competition for the use of the sewage, culverts, farm irrigation and control of various types of flood discharge have developed and will be come more and more keen in the future. The author has tried to calculated a formula that could adjust these conflicts and bring about proper solutions for many problems arising in connection with these conditions. The purpose of this study is to find out effective sewage, culvert, drainage, farm irrigation, flood discharge and other engineering needs in the Taegu area. If demands expand further a new formula will have to be calculated. For the above the author estimated methods of control for the probable expected rainfall using a formula based on data collected over a long period of time. The formula is determined on the basis of the maximum daily rainfall data from 1921 to 1971 in the Taegu area. 1. Iwai methods shows a highly significant correlation among the variations of Hazen, Thomas, Gumbel methods and logarithmic normal distribution. 2. This study obtained the following major formula: ${\log}(x-2.6)=0.241{\xi}+1.92049{\cdots}{\cdots}$(I.M) by using the relation $F(x)=\frac{1}{\sqrt{\pi}}{\int}_{-{\infty}}^{\xi}e^{-{\xi}^2}d{\xi}$. ${\xi}=a{\log}_{10}\(\frac{x+b}{x_0+b}\)$ ($-b<x<{\infty}$) ${\log}(x_0+b)=2.0448$ $\frac{1}{a}=\sqrt{\frac{2N}{N-1}}S_x=0.1954$. $b=\frac{1}{m}\sum\limits_{i=1}^{m}b_s=-2.6$ $S_x=\sqrt{\frac{1}{N}\sum\limits^N_{i=1}\{{\log}(x_i+b)\}^2-\{{\log}(x_0+b)\}^2}=0.169$ This formule may be advantageously applicable to the estimation of flood discharge, sewage, culverts and drainage in the Taegu area. Notation for general terms has been denoted by the following. Other notations for general terms was used as needed. $W_{(x)}$ : probability of occurranec, $W_{(x)}=\int_{x}^{\infty}f_{(n)}dx$ $S_{(x)}$ : probability of noneoccurrance. $S_{(x)}=\int_{-\infty}^{x}f_(x)dx=1-W_{(x)}$ T : Return period $T=\frac{1}{nW_{(x)}}$ or $T=\frac{1}{nS_{(x)}}$ $W_n$ : Hazen plot $W_n=\frac{2n-1}{2N}$ $F_n=1-W_x=1-\(\frac{2n-1}{2N}\)$ n : Number of observation (annual maximum series) P : Probability $P=\frac{N!}{{t!}(N-t)}F{_i}^{N-t}(1-F_i)^t$ $F_n$ : Thomas plot $F_n=\(1-\frac{n}{N+1}\)$ N : Total number of sample size $X_l$ : $X_s$ : maximum, minumum value of total number of sample size.

  • PDF

Analysis of Extreme Rainfall Distribution Scenarios over the Landslide High Risk Zones in Urban Areas (도심지 토사재해 고위험지역 극치강우 시간분포 시나리오 분석)

  • Yoon, Sunkwon;Jang, Sangmin;Rhee, Jinyoung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제58권3호
    • /
    • pp.57-69
    • /
    • 2016
  • In this study, we analyzed the extreme rainfall distribution scenarios based on probable rainfall calculation and applying various time distribution models over the landslide high risk zones in urban areas. We used observed rainfall data form total 71 ASOS (Automated Synoptic Observing System) station and AWS (Automatic Weather Station) in KMA (Korea Meteorological Administration), and we analyzed the linear trends for 1-hr and 24-hr annual maximum rainfall series using simple linear regression method, which are identified their increasing trends with slopes of 0.035 and 0.660 during 1961-2014, respectively. The Gumbel distribution was applied to obtain the return period and probability precipitation for each duration. The IDF (Intensity-Duration-Frequency) curves for landslide high risk zones were derived by applying integrated probability precipitation intensity equation. Results from IDF analysis indicate that the probability precipitation varies from 31.4~38.3 % for 1 hr duration, and 33.0~47.9 % for 24 hr duration. It also showed different results for each area. The $Huff-4^{th}$ Quartile method as well as Mononobe distribution were selected as the rainfall distribution scenarios of landslide high risk zones. The results of this study can be used to provide boundary conditions for slope collapse analysis, to analyze sediment disaster risk, and to use as input data for risk prediction of debris flow.

Calculation of Thermal Conductivity and Heat Capacity from Physical Data for Some Representative Soils of Korea

  • Aydin, Mehmet;Jung, Yeong-Sang;Lee, Hyun-Il;Kim, Kyung-Dae;Yang, Jae-E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • 제45권1호
    • /
    • pp.1-8
    • /
    • 2012
  • The thermal properties including volumetric heat capacity, thermal conductivity, thermal diffusivity, and diurnal and annual damping depths of 10 representative soil series of Korea were calculated using some measurable soil parameters based on the Taxonomical Classification of Korean Soils. The heat capacity of soils demonstrated a linear function of water content and ranged from 0.2 to $0.8cal\;cm^{-3}^{\circ}C^{-1}$ for dry and saturated medium-textured soil, respectively. A small increase in water content of the dry soils caused a sharp increase in thermal conductivity. Upon further increases in water content, the conductivity increased ever more gradually and reached to a maximum value at saturation. The transition from low to high thermal conductivity occurred at low water content in the soils with coarse texture, and at high water content in the other textures. Thermal conductivity ranged between $0.37{\times}10^{-3}cal\;cm^{-1}s^{-1}^{\circ}C^{-1}$ for dry (medium-textured) soil and $4.01{\times}10^{-3}cal\;cm^{-1}s^{-1}^{\circ}C^{-1}$ for saturated (medium/coarse-textured) soil. The thermal diffusivity initially increased rapidly with small increases in water content of the soils, and then decreased upon further increases in the soil-water content. Even in an extreme soil with the highest diffusivity value ($1.1{\times}10^{-2}cm^2s^{-1}$), the daily temperature variation did not penetrate below 70 cm soil depth and the yearly variation not below 13.4 m as four times of damping depths.

Characteristics of Water Quality and factor Analysis on the Variations of Water Quality in Coastal Sea around the Keum River Estuary in Summer (하계 금강하구 주변해역의 수질특성과 수질변동 요인분석)

  • Kwon Jung-No;Kim Jong-Gu;You Sun-Jae
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • 제3권4호
    • /
    • pp.3-22
    • /
    • 2000
  • To know characteristics of water quality in coastal sea around the Keum river estuary in summer, we studied the water quality of surface, middle and bottom level during Jun e~september, 1998. The mean concentrations of COD, DIN, DIP & chlorophyll-a were 1.36mg/L, 28.60㎍-at/L, 0.48㎍-at/L and 4.14㎍/L, respectively, which were over eutrophication criteria in sea water. After the Keum river dyke was constructed, seasonal freshwater discharge was largely changed. About 80% of total annual freshwater discharge was concentrated in summer as rainy season from July to September. The correlation coefficient of DIN versus salinity was shown to be high, and thus the concentration of DIN was closely related to freshwater discharge. Maximum Chlorophyll-a concentration was occurred in September, due to increased DIP concentration, high water temperature and low salinity after heavy rainfall in August. The results of Principal Component Analysis showed that the first factor represented a series of eutrophication factors, the second factor w3s a valiance of seasonal fluctuation, and the third was a variance of progress of mass change.

  • PDF

Derivation of Optimal Design Flood by L-Moments and LB-Moments ( I ) - On the method of L-Moments - (L-모멘트 및 LH-모멘트 기법에 의한 적정 설계홍수량의 유도( I ) - L-모멘트법을 중심으로 -)

  • 이순혁;박명근;맹승진;정연수;김동주;류경식
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • 제40권4호
    • /
    • pp.45-57
    • /
    • 1998
  • This study was conducted to derive optimal design floods by Generalized Extreme Value (GEV) distribution for the annual maximum series at ten watersheds along Han, Nagdong, Geum, Yeongsan and Seomjin river systems. Adequacy for the analysis of flood data used in this study was established by the tests of Independence, Homogeneity, detection of Outliers. L-coefficient of variation, L-skewness and L-kurtosis were calculated by L-moment ratio respectively. Parameters were estimated by the Methods of Moments and L-Moments. Design floods obtained by Methods of Moments and L-Moments using different methods for plotting positions in GEV distribution were compared by the Relative Mean Errors(RME) and Relative Absolute Errors(RAE). The results were analyzed and summarized as follows. 1. Adequacy for the analysis of flood data was acknowledged by the tests of Independence, Homogeneity and detection of Outliers. 2. GEV distribution used in this study was found to be more suitable one than Pearson type 3 distribution by the goodness of fit test using Kolmogorov-Smirnov test and L-Moment ratios diagram in the applied watersheds. 3. Parameters for GEV distribution were estimated using Methods of Moments and L-Moments. 4. Design floods were calculated by Methods of Moments and L-Moments in GEV distribution. 5. It was found that design floods derived by the method of L-Moments using Weibull plotting position formula in GEV distribution are much closer to those of the observed data in comparison with those obtained by method of moments using different formulas for plotting positions from the viewpoint of Relative Mean Errors and Relative Absolute Errors.

  • PDF