DOI QR코드

DOI QR Code

Geographical Impact on the Annual Maximum Rainfall in Korean Peninsula and Determination of the Optimal Probability Density Function

우리나라 연최대강우량의 지형학적 특성 및 이에 근거한 최적확률밀도함수의 산정

  • Nam, Yoon Su (Department of Civil Engineering, Hongik University) ;
  • Kim, Dongkyun (Department of Civil Engineering, Hongik University)
  • Received : 2015.02.17
  • Accepted : 2015.07.24
  • Published : 2015.08.31

Abstract

This study suggested a novel approach of estimating the optimal probability density function (OPDF) of the annual maximum rainfall time series (AMRT) combining the L-moment ratio diagram and the geographical information system. This study also reported several interesting geographical characteristics of the AMRT in Korea. To achieve this purpose, this study determined the OPDF of the AMRT with the duration of 1-, 3-, 6-, 12-, and 24-hours using the method of L-moment ratio diagram for each of the 67 rain gages in Korea. Then, a map with the Thiessen polygons of the 67 rain gages colored differently according the different type of the OPDF, was produced to analyze the spatial trend of the OPDF. In addition, this study produced the color maps which show the fitness of a given probability density function to represent the AMRT. The study found that (1) both L-skewness and L-kurtosis of the AMRT have clear geographical trends, which means that the extreme rainfall events are highly influenced by geography; (2) the impact of the altitude on these two rainfall statistics is greater for the mountaneous region than for the non-mountaneous region. In the mountaneous region, the areas with higher altitude are more likely to experience the less-frequent and strong rainfall events than the areas with lower altitude; (3) The most representative OPDFs of Korea except for the Southern edge are Generalized Extreme Value distribution and the Generalized Logistic distribution. The AMRT of southern edge of Korea was best represented by the Generalized Pareto distribution.

본 연구에서는 L-moment ratio diagram 기법과 지형정보시스템(GIS)을 동시에 활용하여 우리나라의 지속기간별 연 최대강우량의 최적확률밀도함수를 판별하는 새로운 기법을 제안하고, 결과 도출과정에 있어 발견된 연최대강우량의 통계값의 흥미로운 지형학적 특성을 살펴보았다. 이를 위하여 우리나라 기상청에서 운영하는 67개의 강우관측지점에서 관측된 강우자료의 연최대강우량을 1시간, 3시간, 6시간, 12시간, 24시간 누적시간에 대하여 산출하고, L-moment ratio diagram 기법을 활용하여 이들에 대한 최적확률밀도함수를 구한 후, 이를 관측지점에 해당하는 티센 다각형에 다른 색상으로 표현하여 그 공간적 분포를 살펴보았다. 또한, 각 후보 확률밀도함수의 적합도에 대한 지도를 작성하였다. 본 연구의 결과를 요약하면 다음과 같다: (1) 강우의 극한값의 특성을 대표할 수 있는 통계값인 L-skewness와 L-kurtosis는 뚜렷한 공간적 경향을 띠고 있다. 특히 산맥을 포함한 우리나라의 지형적 특성에 큰 영향을 받았다. 이는 발생빈도가 높고 강도가 낮은 평상시의 강우사상뿐 만 아니라, 연최대강우량 또한 지형의 영향을 크게 받는다는 것을 의미한다; (2) 우리나라의 산악지역에서는 연최대강우량의 통계적 특성에 대한 고도의 영향이 비산악지역보다 더 크며, 고도가 높은 지역일수록 발생 빈도가 낮고 강도가 강한 강우사상이 더 자주 발생하며, 강우의 누적기간이 증가할수록 이러한 경향은 작아졌다; (3) 우리나라의 연최대강우량을 가장 잘 대변할 수 있는 확률밀도함수는 Generalized Extreme Value (GEV) 분포와 Generalized Logistic (GLO) 분포이다. 단, 남해안의 중앙지역에 대해서는 Generalized Pareto (GPA) 분포가 가장 적합한 것으로 나타났다.

Keywords

References

  1. Greenwood, JA, Landwehr, JM, Matalas, NC and Wallis, JR (1979). Probability weighted moments: definition and relation to parameters of several distributions expressable in inverse form, Water Resources Research, 15(5), pp. 1049-1054. https://doi.org/10.1029/WR015i005p01049
  2. Heo, JH, Kim, SY, Kim, WS and Kim, TR (2012). Trend Analysis of Parameters of the GEV and Gumbel distribution for Rainfall Data in Korea, Conference on Korean Society of Civil Engineers, Korean Society of Civil Engineers, pp. 278-281. [Korean Literature]
  3. Heo, JH, Lee, YS, Shin, HJ and Kim, KD (2007). Application of regional rainfall frequency analysis in South Korea (I): rainfall quantile estimation, J. of The Korean Society of Civil Engineers, 27(2B), pp. 101-111. [Korean Literature]
  4. Hosking, JRM (1986). The Theory of Probability Weighted Moments, IBM Research Division, TJ Watson Research Center.
  5. Hosking, JRM, WALLIS, JR and WOOD, EF (1985). An appraisal of the regional flood frequency procedure in the UK Flood Studies Report, Hydrological Sciences Journal, 30(1), pp. 85-109. https://doi.org/10.1080/02626668509490973
  6. Kim, KD and Heo, JH (2004). Review on the application of regional frequency analysis according to the sample Size of hydrologic data, Proceedings of the Korea Resources Association Conference, Korea Water Resources Association, pp. 190-194. [Korean Literature]
  7. Kim, WS, Shin, JY, Um, MJ and Heo, JH (2012). Analysis of non-stationary characteristics for rainfall with the trend analysis of L-Moments, J. of Korean Society of Hazard Mitigation, 12(3), pp. 71-80. [Korean Literature] https://doi.org/10.9798/KOSHAM.2012.12.3.071
  8. Landwehr, JM, Matalas, NC and Wallis, JR (1979). Probability weighted moments compared with some traditional techniques in estimating Gumbel parameters and quantiles, Water Resources Research, 15(5), pp. 1055-1064. https://doi.org/10.1029/WR015i005p01055
  9. Lee, DJ and Heo, JH (2001). Frequency analysis of daily rainfall in Han river basin based on regional L-moments algorithm, J. of Korea Water Resources Association, 34(2), pp. 119-130. [Korean Literature]
  10. Lee, CH, Ahn, JH and Kim, TW (2010). Evaluation of probability rainfalls estimated from non-stationary rainfall frequency analysis, J. of Korea Water Resources Association, 43(2), pp. 187-199. [Korean Literature] https://doi.org/10.3741/JKWRA.2010.43.2.187
  11. Oh, TS, Kim, JS, Moon, YI and Yoo, SY (2006). The study on application of regional frequency analysis using kernel density function, J. of Korea Water Resources Association, 39(10), pp. 891-904. [Korean Literature] https://doi.org/10.3741/JKWRA.2006.39.10.891
  12. Song, CW, Kim, YS, Kang, NR, Lee, DR and Kim. HS (2013). Regional frequency analysis for rainfall under climate change, J. of Korea Wetlands Research, 15(1), pp. 125-137. [Korean Literature] https://doi.org/10.17663/JWR.2013.15.1.125
  13. Yun, HS, Um, MJ, Cho, WC and Heo, JH (2009). Orographic precipitation analysis with regional frequency analysis and multiple linear regression, J. of Korea Water Resources Association, 42(6), pp. 465-480. [Korean Literature] https://doi.org/10.3741/JKWRA.2009.42.6.465