Browse > Article
http://dx.doi.org/10.7745/KJSSF.2012.45.1.001

Calculation of Thermal Conductivity and Heat Capacity from Physical Data for Some Representative Soils of Korea  

Aydin, Mehmet (Department of Biological Environment, Kangwon National University)
Jung, Yeong-Sang (Department of Biological Environment, Kangwon National University)
Lee, Hyun-Il (Department of Biological Environment, Kangwon National University)
Kim, Kyung-Dae (Department of Biological Environment, Kangwon National University)
Yang, Jae-E. (Department of Biological Environment, Kangwon National University)
Publication Information
Korean Journal of Soil Science and Fertilizer / v.45, no.1, 2012 , pp. 1-8 More about this Journal
Abstract
The thermal properties including volumetric heat capacity, thermal conductivity, thermal diffusivity, and diurnal and annual damping depths of 10 representative soil series of Korea were calculated using some measurable soil parameters based on the Taxonomical Classification of Korean Soils. The heat capacity of soils demonstrated a linear function of water content and ranged from 0.2 to $0.8cal\;cm^{-3}^{\circ}C^{-1}$ for dry and saturated medium-textured soil, respectively. A small increase in water content of the dry soils caused a sharp increase in thermal conductivity. Upon further increases in water content, the conductivity increased ever more gradually and reached to a maximum value at saturation. The transition from low to high thermal conductivity occurred at low water content in the soils with coarse texture, and at high water content in the other textures. Thermal conductivity ranged between $0.37{\times}10^{-3}cal\;cm^{-1}s^{-1}^{\circ}C^{-1}$ for dry (medium-textured) soil and $4.01{\times}10^{-3}cal\;cm^{-1}s^{-1}^{\circ}C^{-1}$ for saturated (medium/coarse-textured) soil. The thermal diffusivity initially increased rapidly with small increases in water content of the soils, and then decreased upon further increases in the soil-water content. Even in an extreme soil with the highest diffusivity value ($1.1{\times}10^{-2}cm^2s^{-1}$), the daily temperature variation did not penetrate below 70 cm soil depth and the yearly variation not below 13.4 m as four times of damping depths.
Keywords
Thermal conductivity; Heat capacity; Damping depth; Korean soils;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Abu-Hamdeh, N. H., Reeder, R.C., 2000. Soil thermal conductivity: Effects of density, moisture, salt concentration, and organic matter. Soil Sci. Soc. Am. J., 64(4), 1285-1290.   DOI
2 Akinyemi, O. D., Olowofela, J. A., Sauer, T. J., Fasunan, O. O., 2004. Spatio-temporal variability and fractal characterization of the thermal conductivity measured in situ in a natural clay soil. Journal of Geophysics and Engineering, 1(4), 252-258.   DOI
3 Aydin, M., 1993. Estimation of thermal properties of widely distributed red soils in the Harran Plain. 2nd International Meeting on Red Mediterranean Soils. University of Cukurova, Faculty of Agriculture Press, Adana-Turkey, 149-151.
4 Aydin, M., Huwe, B., 1993. Test of a combined soil moisture/soil heat simulation model on a bare field soil in Southern Turkey. Z. Pflanzenern. Bodenk., 156, 441-446.   DOI
5 Balland V., Arp, P. A., 2005. Modeling soil thermal conductivities over a wide range of conditions. J. Environ. Eng. Sci., 4, 549-558.   DOI
6 Becker, B. R., Misra, A., Fricke, B. A., 1992. Development of correlations for soil thermal conductivity. International Communications in Heat and Mass Transfer, 19(1):59-68.   DOI
7 Bendjoudi, H., Cheviron, B., Guerin, R., Tabbagh, A., 2005. Determination of upward/downward groundwater fluxes using transient variations of soil profile temperature: test of the method with Voyons (Aube, France) experimental data. Hydrological Processes, 19, 3735-3745.   DOI
8 Campbell, G. S., 1985. Soil Physics with Basic: Transport Models for Soil-Plant Systems. Elsevier. Amsterdam, Oxford, 150 pp.
9 Cass, A., Campbell, G.S., Jones, T.L., 1984. Enhancement of thermal water vapor diffusion in soil. Soil Sci. Soc. Am. J., 48, 25-32.   DOI
10 Dahiya, R., Ingwersen, J., Streck, T., 2007. The effect of mulching and tillage on the water and temperature regimes of a loess soil: Experimental findings and modeling. Soil & Tillage Research, 96(1-2), 52-63.   DOI
11 De Vries, D. A., 1966. Thermal properties of soils. In: Physics of Plant Environment (2nd ed., edited by W.R. van Wijk). North-Holland Publishing Company, Amsterdam, 210-235.
12 Ekwue, E. I., Stone, R. J., Bhagwat, D., 2006. Thermal conductivity of some compacted Trinidadian soils as affected by peat content. Biosystems Engineering, 94(3), 461-469.   DOI
13 Guo, G., Zhang, H., Araya, K, Jia, H., Ohomiya, K., Matsuda, J., 2007. Improvement of salt-affected soils, part 4: Heat transfer coefficient and thermal conductivity of salt-affected soils. Biosystems Engineering, 96 (4), 593-603.   DOI
14 Hillel, D., 1998. Environmental Soil Physics. Academic Press. San Diego, London, 771 pp.
15 Huwe, B., van der Ploeg, R. R., 1990. Modelle zur Simulation des Stickstoffhaushaltes von Standorten mit unterschiedlicher landwirtschaftlicher Nutzung. Eigenverlag des Instituts fur Wasserbau der Universitaet Stuttgart, 213 pp.
16 Ju, ZQ., Ren, TS., Hu, CS., 2011. Soil thermal conductivity as influenced by aggregation at intermediate water contents. Soil Sci. Soc. Am. J., 75(1), 26-29.   DOI
17 Kim, S.O., Suh, M.S., Kwak, C. H., 2005. Climatological characteristic in the variation of soil temperature in Korea. Journal of Korean Earth Science Society, 26(1):93-105.
18 Liu, H., Wang, B., Fu, C., 2008. Relationships between surface albedo, soil thermal parameters and soil moisture in the semi-arid area of Tongyu, Northeastern China. Advances in Atmospheric Sciences, 25(5), 757-764.   DOI
19 Koo, M. H., Kim, Y. J., Suh, M. C., Suh, M. S., 2003. Estimating thermal diffusivity of soils in Korea using temperature time series data. Journal of the Geological Society of Korea, 39(3): 301-317.
20 Leong, W. H. Tarnawski, V. R., Gori, F., Buchan, G. D., Sundberg, J., 2005. Inter-particle contact heat transfer model: an extension to soils at elevated temperatures. International Journal of Energy Research, 29(2), 131-144.   DOI
21 Logsdon, S. D., Green, T. R., Bonta, J. V., Seyfried, M, S., Evett, S. R., 2010. Comparison of electrical and thermal conductivities for soils from five states. Soil science, 175(12), 573-578.   DOI
22 Lu, S., Ren, T., Gong, Y., Horton, R., 2007. An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Sci. Soc. Am. J., 71(1), 8-14.   DOI
23 Lu, S., Ren, T. Yu, Z.., Horton, R., 2011. A method to estimate the water vapour enhancement factor in soil. European Journal of Soil Science, 62, 498-504.   DOI
24 Markle, J. M., Schincariol, R. A., Sass, J. H., Molson, J. W., 2006. Characterizing the two-dimentional thermal conductivity distribution in a sand and gravel aquifer. Soil Sci. Soc. Am. J., 70, 1281-1294.   DOI
25 Mochizuki, H,, Mizoguchi, M., Miyazaki, T., 2008. Effects of NaCl concentration on the thermal conductivity of sand and glass beads with moisture contents at levels below field capacity. Soil Science and Plant Nutrition, 54(6), 829-838.   DOI
26 NAAS, 1999. Taxonomical Classification of Korean Soils. National Academy of Agricultural Sciences.
27 Song, K. C., Jung, Y. S., Kim, B. C., Ahn, Y. S., Um, K. T., 1992. Physical properties and apparent thermal diffusivity of the soils where soil temperature was measured regularly. J. Korean Soc. Soil Sci. Fert., 25(3), 220-230.
28 O'Donnell, J. A., Romanovsky, V. E., Harden, J. W., McGuire, A. D., 2009. The effect of moisture content on the thermal conductivity of moss and organic soil horizons from black spruce ecosystems in interior alaska. Soil Science, 174(12), 646-651.   DOI
29 Sakaguchi, I., Momose, T., Kasubuchi, T., 2007. Decrease in thermal conductivity with increasing temperature in nearly dry sandy soil. European Journal of Soil Science, 58(1), 92-97.   DOI
30 Scott, H. D., 2000. Soil Physics: Agricultural and Environmental Applications. Iowa State University Press, 425 pp.
31 Tarnawski, V. R., Momose, T., Leong, W. H., 2009. Assessing the impact of quartz content on the prediction of soil thermal conductivity. Geotechnique 59(4), 331-338.   DOI
32 Usowicz, B., Lipiec, J., Ferrero, A., 2006. Prediction of soil thermal conductivity based on penetration resistance and water content or air-filled porosity. International Journal of Heat and Mass Transfer, 49(25-26), 5010-5017.   DOI
33 Wang, K., Wang, P., Liu, J., Sparrow, M., Haginoya, S., Zhou, X., 2005. Variation of surface albedo and soil thermal parameters with soil moisture content at a semi-desert site on the Western Tibetan Plateau. Boundary-Layer Meteorology, 116:117-129.   DOI
34 Yang, K., Koike, T., 2005. Comments on "estimating soil water contents from soil temperature measurements by using an adaptive Kalman filter". Journal of Applied Meteorology, 44, 546-550.   DOI
35 Yesilsoy, M. S., Aydin, M., 1991. Soil Physics (in Turkish). University of Cukurova, Faculty of Agriculture, Text-Book No:124, 228 pp.
36 Zhang, Y. S., Sonn, Y. K., Jung, S. J., Lee, G. J., Kim, M. S., Kim, S. K., Lee, J. Y., Pyun, I. H., 2006. Mineral composition of the soils derived from residuum and collovium. Korean J. Soil Sci. Fert., 39(5):245-252.
37 Yun, T. S., Santamarina, J. C., 2008. Fundamental study of thermal conduction in dry soils. Granular Matter, 10(3), 197-207.   DOI