• Title/Summary/Keyword: annealing effects

Search Result 891, Processing Time 0.028 seconds

Effects of Ohmic Area Etching on Buffer Breakdown Voltage of AlGaN/GaN HEMT

  • Wang, Chong;Wel, Xiao-Xiao;Zhao, Meng-Di;He, Yun-Long;Zheng, Xue-Feng;Mao, Wei;Ma, Xiao-Hua;Zhang, Jin-Cheng;Hao, Yue
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.3
    • /
    • pp.125-128
    • /
    • 2017
  • This study is on how ohmic area etching affects the buffer breakdown voltage of AlGaN/GaN HEMT. The surface morphology of the ohmic metal can be improved by whole etching on the ohmic area. The buffer breakdown voltages of the samples with whole etching on the ohmic area were improved by the suppression of the metal spikes formed under the ohmic contact regions during high-temperature annealing. The samples with selective etching on the ohmic area were investigated for comparison. In addition, the buffer leakage currents were measured on the different radii of the wafer, and the uniformity of the buffer leakage currents on the wafer were investigated by PL mapping measurement.

Preparation of Chemical and Fouling Resistant Semicrystalline Membranes (내식성, 내오염성 결정성 고분자 분리막의 제조)

  • 유종범;송기국;김성수
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.342-349
    • /
    • 2000
  • Hollow fiber membranes were prepared via thermally-induced phase separation process followed by stretching process from isotactic polypropylene and soybean oil system. Various operating parameters were examined in terms of their effects on the structure variation and performances of the membrane, and were optimized. Melt viscosity of the melt sample had influence on the formation of the microfibrils, and addition of nucleating agent increased the nucleation density to enhance the interspherulitic pore formation by stretching. Annealing the membrane at its stretched state relaxed the stress induced by stretching and helped the membrane maintain the stretched structure without shrinking. Solid-liquid Phase separation is more prevalent when the nucleating agent was added, and coagulation bath temperature determined the nucleation density, which affected the pore formation by stretching. In the absence of nucleating agent, nucleation was not effective and liquid-liquid phase separation governed the structure formation, which showed the opposite trend to that of the case with nucleating agent.

  • PDF

The Effects of Precursor on the Formation and Their Properties of Spin-on Dielectric Films Used for Sub-50 nm Technology and Beyond (50 nm 이상의 CMOS 기술에 이용되는 Spin-on Dielectric 박막 형성과 그 특성에 미치는 전구체의 영향)

  • Lee, Wan-Gyu
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.3
    • /
    • pp.182-188
    • /
    • 2011
  • Polysilazane and polymethylsilazane based precursor films were deposited on Si-substrate by spin-coating, subsequently annealed at $150{\sim}850^{\circ}C$, and characterized. Structural analysis, shrink, compositional change, etch rate, and gap-filling were observed. Annealing the precursor films led to formation of spin-on dielectric films. C-containing precursor films showed that less loss of N, H, and C while less gain of O than that of C-free precursor films at $400^{\circ}C$, but more loss of N, H, and C while more gain of O at $850^{\circ}C$. Thus polysilazane based precursor films exhibited less reduction in thickness of 14.5% than silazane based one of 15.6% at $400^{\circ}C$ but more 37.4% than 19.4% at $850^{\circ}C$. FTIR indicated that C induced smaller amount of Si-O bond, non-uniform property, and lower resistance to chemical etching.

Influence of Nitrogen Doping and Surface Modification on Photocatalytic Activity of $TiO_2$ Under Visible Light

  • Jeong, Bora;Park, Eun Ji;Jeong, Myung-Geun;Yoon, Hye Soo;Kim, Young Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.130.1-130.1
    • /
    • 2013
  • We made attempts to improve photocatalytic activity of $TiO_2$ nanoparticles under visible light exposure by combining two additional treatments. N-doping of $TiO_2$ by ammonia gas treatment at $600^{\circ}C$ increased absorbance of visible light. By coating thin film of polydimethylsiloxane (PDMS), and subsequent vacuum-annealing at $800^{\circ}C$, $TiO_2$, became more hydrophilic, thereby enhancing photocatalytic activity of $TiO_2$. Four types of $TiO_2$ samples were prepared, bare-$TiO_2$, hydrophilic-modified $TiO_2$ ($h-PDMS/TiO_2$), N-doped $TiO_2$ ($N/TiO_2$) and hydrophilic-modified and N-doped $TiO_2$ ($h-PDMS/N/TiO_2$). Adsorption capability was evaluated under dark condition and photocatalytic activity of $TiO_2$ was evaluated by photodegradation of MB under blue LED (400 nm< ${\lambda}$) irradiation. N-doping on $TiO_2$ was characterized using XPS and hydrophilic modification of $TiO_2$ surface was analyzed by FT-IR spectrometer. It was found that N-doping and hydrophilic modification both had positive effect on enhancing adsorption capability and photocatalytic activity of $TiO_2$ at the same time. Particularly, N-doping enhanced visible light absorption of $TiO_2$, whereas hydrophilic surface modification increased MB adsorption capacity. By combining these two strategies, photocatalytic acitivity under visible light irradiation became the sum of individual effects of N-doping and hydrophilic modification.

  • PDF

Effect of Adding Isopropylphenyl Diphenyl Phosphate on Isothermal Crystallization Behavior and Flame Retardancy of PLA Film (Isopropylphenyl Diphenyl Phosphate 첨가가 PLA필름의 등온결정화 거동과 방염특성에 미치는 영향)

  • Kim, Moon-Sun;Kim, Gyusun;Kim, Byung-Woo
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.169-175
    • /
    • 2012
  • In the study, the effects of $130{\sim}150^{\circ}C$ annealing condition and 1~10 wt% isopropylphenyl diphenyl phosphate (IPPP) on crystallization behavior and flame retardancy of a full name (PLA) film were determined. The crystallization kinetics of PLA films with adding 1, 5, and 10 wt% IPPP at $140^{\circ}C$ were higher than those at 130 and $150^{\circ}C$. The average crystallinity and crystallite size of PLA film with 1 wt% IPPP were 21.3% and 24.8 nm, respectively. With an increasing IPPP content, the crystallinity of PLA film increased and the crystallite size decreased. The burning rate lowered with an increasing IPPP content as well.

Effects of Resistant Starch on the Viscosity and Stability of Fat-Free Dressing (무지방 드레싱의 점도와 안정성에 미치는 저항전분의 효과)

  • Song, Ji-Young;No, Jun Hee;Shin, Malshick
    • Korean journal of food and cookery science
    • /
    • v.32 no.3
    • /
    • pp.253-260
    • /
    • 2016
  • Purpose: To develop fat-free dressing containing a resistant starch (RS) as a dietary fiber, the viscosity and stability of various type RSes prepared from wheat, maize, potato, rice, waxy rice, and amaranth starches were investigated by using Brookfield viscometer. The shape of RS granule in the dressing during storage was also observed. Methods: The viscosity of fat free dressing with different retrograded RS3 (RS3V) prepared from waxy rice starch with 0.1% lemon vinegar and ascorbate mixed solution had higher RS3 that was maintained constant during storage. Annealing and heating prior to cross-linking, and heating after cross-linking increased RS level of RS4 type starches. Results: The viscosities and stabilities of dressings with RS were different depending on starch sources and RS preparation conditions. The heated RS4 (HRS4) increased in viscosity and stability with RS4 addition. Especially the fat-free dressings with HRS4 prepared from rice and waxy rice starches maintained stability regardless of separation after one month storage with only 7% separation after 6 month storages. The shape of RS4 granule in acidic medium of dressing did not change until 6 months. Conclusion: In this study, RS4 made by the rice and waxy rice starches showed high viscosity and maintained stability of the fat-free dressings during storage.

Hydrogen shallow donors in ZnO and $SnO_2$ thin films prepared by sputtering methods

  • Kim, Dong-Ho;Kim, Hyeon-Beom;Kim, Hye-Ri;Lee, Geon-Hwan;Song, Pung-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.145-145
    • /
    • 2010
  • In this paper, we report that the effects of hydrogen doping on the electrical and optical properties of typical transparent conducting oxide films such as ZnO and $SnO_2$ prepared by magnetron sputtering. Recently, density functional theory (DFT) calculations have shown strong evidence that hydrogen acts as a source of n-type conductivity in ZnO. In this work, the beneficial effect of hydrogen incorporation on Ga-doped ZnO thin films was demonstrated. It was found that hydrogen doping results a noticeable improvement of the conductivity mainly due to the increases in carrier concentration. Extent of the improvement was found to be quite dependent on the deposition temperature. A low resistivity of $4.0{\times}10^{-4}\;{\Omega}{\cdot}cm$ was obtained for the film grown at $160^{\circ}C$ with $H_2$ 10% in sputtering gas. However, the beneficial effect of hydrogen doping was not observed for the films deposited at $270^{\circ}C$. Variations of the electrical transport properties upon vacuum annealing showed that the difference is attributed to the thermal stability of interstitial hydrogen atoms in the films. Theoretical calculations also suggested that hydrogen forms a shallow-donor state in $SnO_2$, even though no experimental determination has yet been performed. We prepared undoped $SnO_2$ thin films by RF magnetron sputtering under various hydrogen contents in sputtering ambient and then exposed them to H-plasma. Our results clearly showed that the hydrogen incorporation in $SnO_2$ leads to the increase in carrier concentration. Our experimental observation supports the fact that hydrogen acting as a shallow donor seems to be a general feature of the TCOs.

  • PDF

Effect of Residual Droplet on the Solution-Grown SiC Single Crystals (상부종자 용액 성장에 있어 성장결정상 잔류액적의 영향)

  • Ha, Minh-Tan;Shin, Yun-Ji;Bae, Si-Young;Yoo, Yong-Jae;Jeong, Seong-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.516-521
    • /
    • 2019
  • The top seeded solution growth (TSSG) method is an alternative technique to grow high-quality SiC crystals that has been actively studied for the last two decades. However, the TSSG method has different issues that need to be resolved when compared to the commercial SiC crystal growing method, i.e., physical vapor transport (PVT). A particular issue of the TSSG method of results from the presence of liquid droplets on the grown crystal that can remain even after crystal growth; this induces residual stress on the crystal surface. Hence, the residual droplet causes several unwanted effects on the crystal such as the initiation of micro-cracks, micro-pipes, and polytype inclusions. Therefore, this study investigated the formation of the residual droplet through multiphysics simulations and lead to the development of a liquid droplet removal method. As a result, we found that although residual liquid droplets significantly apply residual stress on the grown crystal, these could be vaporized by adopting thermal annealing processes after the relevant crystal growing steps.

A simple damper optimization algorithm for both target added damping ratio and interstorey drift ratio

  • Aydin, Ersin
    • Earthquakes and Structures
    • /
    • v.5 no.1
    • /
    • pp.83-109
    • /
    • 2013
  • A simple damper optimization method is proposed to find optimal damper allocation for shear buildings under both target added damping ratio and interstorey drift ratio (IDR). The damping coefficients of added dampers are considered as design variables. The cost, which is defined as the sum of damping coefficient of added dampers, is minimized under a target added damping ratio and the upper and the lower constraint of the design variables. In the first stage of proposed algorithm, Simulated Annealing, Nelder Mead and Differential Evolution numerical algorithms are used to solve the proposed optimization problem. The candidate optimal design obtained in the first stage is tested in terms of the IDRs using linear time history analyses for a design earthquake in the second stage. If all IDRs are below the allowable level, iteration of the algorithm is stopped; otherwise, the iteration continues increasing the target damping ratio. By this way, a structural response IDR is also taken into consideration using a snap-back test. In this study, the effects of the selection of upper limit for added dampers, the storey mass distribution and the storey stiffness distribution are all investigated in terms of damper distributions, cost function, added damping ratio and IDRs for 6-storey shear building models. The results of the proposed method are compared with two existing methods in the literature. Optimal designs are also compared with uniform designs according to both IDRs and added damping ratios. The numerical results show that the proposed damper optimization method is easy to apply and is efficient to find optimal damper distribution for a target damping ratio and allowable IDR value.

Granulations of SiOx Nanoparticles to Improve Electrochemical Properties as a Li-Ion Battery's Anode (리튬이온전지 음극용 SiOx 나노입자의 조대화를 통한 전기화학 특성 향상)

  • Lee, Bora;Lee, Jae Young;Jang, Boyun;Kim, Joonsoo;Kim, Sung-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.1
    • /
    • pp.70-77
    • /
    • 2019
  • $SiO_x$ nanoparticles were granulated, and their microstructures and effects on electrochemical behaviors were investigated. In spite of the promising electrochemical performance of $SiO_x$, nanoparticles have limitations such as high surface area, low density, and difficulty in handling during slurry processing. Granulation can be one solution. In this study, pelletizing and annealing were conducted to create particles with sizes of several decades of micron. Decrease in surface area directly influences the initial charge and discharge process when granules are applied as anode materials for Li-ion batteries. Lower surface area is key to decreasing the amount of irreversible phase-formation, such as $Li_2Si_2O_5$, $Li_2SiO_3$ and $Li_4SiO_4$, as well as forming the solid electrolyte interface. Additionally, aggregation of nanoparticles is required to obtain further enhancement of the electrochemical behavior due to restrictions that there be no $Li_4SiO_4$-related reaction during the first discharge process.